Loading…

Adjustment Optimization for a Model of Differential Realization of a Multidimensional Second-Order System

We study the problem of calculating the preferred differential realization system in the space of similar plant-controller-observer models induced by transformation groups over an identified second-order dynamical system. We prove theorems on the existence of a transforming matrix (an a posteriori b...

Full description

Saved in:
Bibliographic Details
Published in:Differential equations 2019-10, Vol.55 (10), p.1390-1396
Main Authors: Rusanov, V. A., Daneev, A. V., Linke, Yu. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-553b2da47691582237c2e5f1c8c608d4837df97636e77d0dd15832791f9c98293
cites cdi_FETCH-LOGICAL-c355t-553b2da47691582237c2e5f1c8c608d4837df97636e77d0dd15832791f9c98293
container_end_page 1396
container_issue 10
container_start_page 1390
container_title Differential equations
container_volume 55
creator Rusanov, V. A.
Daneev, A. V.
Linke, Yu. E.
description We study the problem of calculating the preferred differential realization system in the space of similar plant-controller-observer models induced by transformation groups over an identified second-order dynamical system. We prove theorems on the existence of a transforming matrix (an a posteriori basis of the configuration space) in the transformation groups GL n (ℝ) and SO n minimizing the mismatch between the positional force matrix and its reference rated parameters. Based on Morse theory, we construct a nonlinear matrix characteristic equation of the optimal SO n -adjustment process. The results have applications in the differential precise modeling of forced oscillations and generate statements of the problem in the infinite-dimensional case.
doi_str_mv 10.1134/S0012266119100148
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2314280186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720892482</galeid><sourcerecordid>A720892482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-553b2da47691582237c2e5f1c8c608d4837df97636e77d0dd15832791f9c98293</originalsourceid><addsrcrecordid>eNp1kUtLAzEUhYMoWKs_wN2A69E8ZibJstQnVApW10PMo6TMTGqSLuqv95ZRXIjcRS73fOdywkXokuBrQlh1s8KYUNo0hEgCbSWO0IQ0WJQMC3aMJge5POin6CylDcZYclJPkJ-ZzS7l3g65WG6z7_2nyj4MhQuxUMVzMLYrgituvXM2AuVVV7xY1f1woAG267I3HrYkmAGxsjoMplxGY2Ox2qds-3N04lSX7MX3O0Vv93ev88dysXx4ms8WpWZ1ncu6Zu_UqIo3ktSCUsY1tbUjWmj4jqkE48ZJ3rDGcm6wMUAxyiVxUktBJZuiq3HvNoaPnU253YRdhFCppYxUVGAiGqCuR2qtOtv6wYUclYYytveQ3ToP8xmnWEhaCQoGMhp0DClF69pt9L2K-5bg9nCC9s8JwENHTwJ2WNv4G-V_0xeBRIbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314280186</pqid></control><display><type>article</type><title>Adjustment Optimization for a Model of Differential Realization of a Multidimensional Second-Order System</title><source>Springer Link</source><creator>Rusanov, V. A. ; Daneev, A. V. ; Linke, Yu. E.</creator><creatorcontrib>Rusanov, V. A. ; Daneev, A. V. ; Linke, Yu. E.</creatorcontrib><description>We study the problem of calculating the preferred differential realization system in the space of similar plant-controller-observer models induced by transformation groups over an identified second-order dynamical system. We prove theorems on the existence of a transforming matrix (an a posteriori basis of the configuration space) in the transformation groups GL n (ℝ) and SO n minimizing the mismatch between the positional force matrix and its reference rated parameters. Based on Morse theory, we construct a nonlinear matrix characteristic equation of the optimal SO n -adjustment process. The results have applications in the differential precise modeling of forced oscillations and generate statements of the problem in the infinite-dimensional case.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266119100148</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Control Theory ; Difference and Functional Equations ; Differential equations ; Eigenvalues ; Eigenvectors ; Existence theorems ; Mathematics ; Mathematics and Statistics ; Optimization ; Ordinary Differential Equations ; Partial Differential Equations ; Transformations (mathematics)</subject><ispartof>Differential equations, 2019-10, Vol.55 (10), p.1390-1396</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-553b2da47691582237c2e5f1c8c608d4837df97636e77d0dd15832791f9c98293</citedby><cites>FETCH-LOGICAL-c355t-553b2da47691582237c2e5f1c8c608d4837df97636e77d0dd15832791f9c98293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Rusanov, V. A.</creatorcontrib><creatorcontrib>Daneev, A. V.</creatorcontrib><creatorcontrib>Linke, Yu. E.</creatorcontrib><title>Adjustment Optimization for a Model of Differential Realization of a Multidimensional Second-Order System</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We study the problem of calculating the preferred differential realization system in the space of similar plant-controller-observer models induced by transformation groups over an identified second-order dynamical system. We prove theorems on the existence of a transforming matrix (an a posteriori basis of the configuration space) in the transformation groups GL n (ℝ) and SO n minimizing the mismatch between the positional force matrix and its reference rated parameters. Based on Morse theory, we construct a nonlinear matrix characteristic equation of the optimal SO n -adjustment process. The results have applications in the differential precise modeling of forced oscillations and generate statements of the problem in the infinite-dimensional case.</description><subject>Control Theory</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Existence theorems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Transformations (mathematics)</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLAzEUhYMoWKs_wN2A69E8ZibJstQnVApW10PMo6TMTGqSLuqv95ZRXIjcRS73fOdywkXokuBrQlh1s8KYUNo0hEgCbSWO0IQ0WJQMC3aMJge5POin6CylDcZYclJPkJ-ZzS7l3g65WG6z7_2nyj4MhQuxUMVzMLYrgituvXM2AuVVV7xY1f1woAG267I3HrYkmAGxsjoMplxGY2Ox2qds-3N04lSX7MX3O0Vv93ev88dysXx4ms8WpWZ1ncu6Zu_UqIo3ktSCUsY1tbUjWmj4jqkE48ZJ3rDGcm6wMUAxyiVxUktBJZuiq3HvNoaPnU253YRdhFCppYxUVGAiGqCuR2qtOtv6wYUclYYytveQ3ToP8xmnWEhaCQoGMhp0DClF69pt9L2K-5bg9nCC9s8JwENHTwJ2WNv4G-V_0xeBRIbc</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Rusanov, V. A.</creator><creator>Daneev, A. V.</creator><creator>Linke, Yu. E.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20191001</creationdate><title>Adjustment Optimization for a Model of Differential Realization of a Multidimensional Second-Order System</title><author>Rusanov, V. A. ; Daneev, A. V. ; Linke, Yu. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-553b2da47691582237c2e5f1c8c608d4837df97636e77d0dd15832791f9c98293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Control Theory</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Existence theorems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rusanov, V. A.</creatorcontrib><creatorcontrib>Daneev, A. V.</creatorcontrib><creatorcontrib>Linke, Yu. E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rusanov, V. A.</au><au>Daneev, A. V.</au><au>Linke, Yu. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjustment Optimization for a Model of Differential Realization of a Multidimensional Second-Order System</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>55</volume><issue>10</issue><spage>1390</spage><epage>1396</epage><pages>1390-1396</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We study the problem of calculating the preferred differential realization system in the space of similar plant-controller-observer models induced by transformation groups over an identified second-order dynamical system. We prove theorems on the existence of a transforming matrix (an a posteriori basis of the configuration space) in the transformation groups GL n (ℝ) and SO n minimizing the mismatch between the positional force matrix and its reference rated parameters. Based on Morse theory, we construct a nonlinear matrix characteristic equation of the optimal SO n -adjustment process. The results have applications in the differential precise modeling of forced oscillations and generate statements of the problem in the infinite-dimensional case.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266119100148</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2019-10, Vol.55 (10), p.1390-1396
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_2314280186
source Springer Link
subjects Control Theory
Difference and Functional Equations
Differential equations
Eigenvalues
Eigenvectors
Existence theorems
Mathematics
Mathematics and Statistics
Optimization
Ordinary Differential Equations
Partial Differential Equations
Transformations (mathematics)
title Adjustment Optimization for a Model of Differential Realization of a Multidimensional Second-Order System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjustment%20Optimization%20for%20a%20Model%20of%20Differential%20Realization%20of%20a%20Multidimensional%20Second-Order%20System&rft.jtitle=Differential%20equations&rft.au=Rusanov,%20V.%20A.&rft.date=2019-10-01&rft.volume=55&rft.issue=10&rft.spage=1390&rft.epage=1396&rft.pages=1390-1396&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266119100148&rft_dat=%3Cgale_proqu%3EA720892482%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-553b2da47691582237c2e5f1c8c608d4837df97636e77d0dd15832791f9c98293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2314280186&rft_id=info:pmid/&rft_galeid=A720892482&rfr_iscdi=true