Loading…

Model-free stochastic collocation for an arbitrage-free implied volatility: Part I

This paper explains how to calibrate a stochastic collocation polynomial against market option prices directly. The method is first applied to the interpolation of short-maturity equity option prices in a fully arbitrage-free manner and then to the joint calibration of the constant maturity swap con...

Full description

Saved in:
Bibliographic Details
Published in:Decisions in economics and finance 2019-12, Vol.42 (2), p.679-714
Main Authors: Le Floc’h, Fabien, Oosterlee, Cornelis W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-eab91caa7003be39c674deedfff642fcb9192a613c5c23bb393e401f226a41ce3
cites cdi_FETCH-LOGICAL-c456t-eab91caa7003be39c674deedfff642fcb9192a613c5c23bb393e401f226a41ce3
container_end_page 714
container_issue 2
container_start_page 679
container_title Decisions in economics and finance
container_volume 42
creator Le Floc’h, Fabien
Oosterlee, Cornelis W.
description This paper explains how to calibrate a stochastic collocation polynomial against market option prices directly. The method is first applied to the interpolation of short-maturity equity option prices in a fully arbitrage-free manner and then to the joint calibration of the constant maturity swap convexity adjustments with the interest rate swaptions smile. To conclude, we explore some limitations of the stochastic collocation technique.
doi_str_mv 10.1007/s10203-019-00238-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2314281194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2184857052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-eab91caa7003be39c674deedfff642fcb9192a613c5c23bb393e401f226a41ce3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CrgOpqTZC5xJ8VLoaKIrkMmk9Qp00lNUmnf3ugI7ro6B873_wc-hC6AXgGl1XUEyignFCShlPGabA_QBIBJUhalPMx7ITmp65ofo5MYl5RCUQuYoNcn39qeuGAtjsmbDx1TZ7Dxfe-NTp0fsPMB6wHr0HQp6IUd4W617jvb4i_fZ6zv0u4Gv-iQ8OwMHTndR3v-N0_R-_3d2_SRzJ8fZtPbOTGiKBOxupFgtK4o5Y3l0pSVaK1tnXOlYM7kq2S6BG4Kw3jTcMmtoOAYK7UAY_kpuhx718F_bmxMauk3YcgvFeMgWA0gxV4KalEXFS1YpthImeBjDNapdehWOuwUUPVjWI2GVTasfg2rbQ7xMRQzPCxs-K_ek_oGSlR-xA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184857052</pqid></control><display><type>article</type><title>Model-free stochastic collocation for an arbitrage-free implied volatility: Part I</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Springer Nature</source><creator>Le Floc’h, Fabien ; Oosterlee, Cornelis W.</creator><creatorcontrib>Le Floc’h, Fabien ; Oosterlee, Cornelis W.</creatorcontrib><description>This paper explains how to calibrate a stochastic collocation polynomial against market option prices directly. The method is first applied to the interpolation of short-maturity equity option prices in a fully arbitrage-free manner and then to the joint calibration of the constant maturity swap convexity adjustments with the interest rate swaptions smile. To conclude, we explore some limitations of the stochastic collocation technique.</description><identifier>ISSN: 1593-8883</identifier><identifier>EISSN: 1129-6569</identifier><identifier>DOI: 10.1007/s10203-019-00238-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Arbitrage ; Collocation ; Convexity ; Econometrics ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Finance ; Interpolation ; Management ; Maturity ; Operations Research/Decision Theory ; Polynomials ; Prices ; Pricing ; Public Finance ; Securities prices ; Volatility</subject><ispartof>Decisions in economics and finance, 2019-12, Vol.42 (2), p.679-714</ispartof><rights>The Author(s) 2019</rights><rights>Decisions in Economics and Finance is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-eab91caa7003be39c674deedfff642fcb9192a613c5c23bb393e401f226a41ce3</citedby><cites>FETCH-LOGICAL-c456t-eab91caa7003be39c674deedfff642fcb9192a613c5c23bb393e401f226a41ce3</cites><orcidid>0000-0002-1142-8470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Le Floc’h, Fabien</creatorcontrib><creatorcontrib>Oosterlee, Cornelis W.</creatorcontrib><title>Model-free stochastic collocation for an arbitrage-free implied volatility: Part I</title><title>Decisions in economics and finance</title><addtitle>Decisions Econ Finan</addtitle><description>This paper explains how to calibrate a stochastic collocation polynomial against market option prices directly. The method is first applied to the interpolation of short-maturity equity option prices in a fully arbitrage-free manner and then to the joint calibration of the constant maturity swap convexity adjustments with the interest rate swaptions smile. To conclude, we explore some limitations of the stochastic collocation technique.</description><subject>Arbitrage</subject><subject>Collocation</subject><subject>Convexity</subject><subject>Econometrics</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>Interpolation</subject><subject>Management</subject><subject>Maturity</subject><subject>Operations Research/Decision Theory</subject><subject>Polynomials</subject><subject>Prices</subject><subject>Pricing</subject><subject>Public Finance</subject><subject>Securities prices</subject><subject>Volatility</subject><issn>1593-8883</issn><issn>1129-6569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kMtKAzEUhoMoWC8v4CrgOpqTZC5xJ8VLoaKIrkMmk9Qp00lNUmnf3ugI7ro6B873_wc-hC6AXgGl1XUEyignFCShlPGabA_QBIBJUhalPMx7ITmp65ofo5MYl5RCUQuYoNcn39qeuGAtjsmbDx1TZ7Dxfe-NTp0fsPMB6wHr0HQp6IUd4W617jvb4i_fZ6zv0u4Gv-iQ8OwMHTndR3v-N0_R-_3d2_SRzJ8fZtPbOTGiKBOxupFgtK4o5Y3l0pSVaK1tnXOlYM7kq2S6BG4Kw3jTcMmtoOAYK7UAY_kpuhx718F_bmxMauk3YcgvFeMgWA0gxV4KalEXFS1YpthImeBjDNapdehWOuwUUPVjWI2GVTasfg2rbQ7xMRQzPCxs-K_ek_oGSlR-xA</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Le Floc’h, Fabien</creator><creator>Oosterlee, Cornelis W.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-1142-8470</orcidid></search><sort><creationdate>20191201</creationdate><title>Model-free stochastic collocation for an arbitrage-free implied volatility: Part I</title><author>Le Floc’h, Fabien ; Oosterlee, Cornelis W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-eab91caa7003be39c674deedfff642fcb9192a613c5c23bb393e401f226a41ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arbitrage</topic><topic>Collocation</topic><topic>Convexity</topic><topic>Econometrics</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>Interpolation</topic><topic>Management</topic><topic>Maturity</topic><topic>Operations Research/Decision Theory</topic><topic>Polynomials</topic><topic>Prices</topic><topic>Pricing</topic><topic>Public Finance</topic><topic>Securities prices</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Floc’h, Fabien</creatorcontrib><creatorcontrib>Oosterlee, Cornelis W.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Decisions in economics and finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Floc’h, Fabien</au><au>Oosterlee, Cornelis W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-free stochastic collocation for an arbitrage-free implied volatility: Part I</atitle><jtitle>Decisions in economics and finance</jtitle><stitle>Decisions Econ Finan</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>42</volume><issue>2</issue><spage>679</spage><epage>714</epage><pages>679-714</pages><issn>1593-8883</issn><eissn>1129-6569</eissn><abstract>This paper explains how to calibrate a stochastic collocation polynomial against market option prices directly. The method is first applied to the interpolation of short-maturity equity option prices in a fully arbitrage-free manner and then to the joint calibration of the constant maturity swap convexity adjustments with the interest rate swaptions smile. To conclude, we explore some limitations of the stochastic collocation technique.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10203-019-00238-x</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-1142-8470</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1593-8883
ispartof Decisions in economics and finance, 2019-12, Vol.42 (2), p.679-714
issn 1593-8883
1129-6569
language eng
recordid cdi_proquest_journals_2314281194
source International Bibliography of the Social Sciences (IBSS); Springer Nature
subjects Arbitrage
Collocation
Convexity
Econometrics
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Finance
Interpolation
Management
Maturity
Operations Research/Decision Theory
Polynomials
Prices
Pricing
Public Finance
Securities prices
Volatility
title Model-free stochastic collocation for an arbitrage-free implied volatility: Part I
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-free%20stochastic%20collocation%20for%20an%20arbitrage-free%20implied%20volatility:%20Part%20I&rft.jtitle=Decisions%20in%20economics%20and%20finance&rft.au=Le%20Floc%E2%80%99h,%20Fabien&rft.date=2019-12-01&rft.volume=42&rft.issue=2&rft.spage=679&rft.epage=714&rft.pages=679-714&rft.issn=1593-8883&rft.eissn=1129-6569&rft_id=info:doi/10.1007/s10203-019-00238-x&rft_dat=%3Cproquest_cross%3E2184857052%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-eab91caa7003be39c674deedfff642fcb9192a613c5c23bb393e401f226a41ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2184857052&rft_id=info:pmid/&rfr_iscdi=true