Loading…
Mono-scale and multi-scale formulations of gradient-enriched dynamic piezomagnetics
In this contribution, we combine and extend earlier work on static piezomagnetics and dynamic gradient elasticity to develop novel dynamic piezomagnetic continuum models. The governing equations can be formulated as a mono-scale model or as multi-scale models. The latter include full coupling betwee...
Saved in:
Published in: | Wave motion 2019-11, Vol.91, p.102402, Article 102402 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-85e640ea79833a6ae1a4f6ca981d5576ab012f1ecf9ba36a81afb5e98554dcfb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-85e640ea79833a6ae1a4f6ca981d5576ab012f1ecf9ba36a81afb5e98554dcfb3 |
container_end_page | |
container_issue | |
container_start_page | 102402 |
container_title | Wave motion |
container_volume | 91 |
creator | Xu, Mingxiu Askes, Harm Gitman, Inna M. |
description | In this contribution, we combine and extend earlier work on static piezomagnetics and dynamic gradient elasticity to develop novel dynamic piezomagnetic continuum models. The governing equations can be formulated as a mono-scale model or as multi-scale models. The latter include full coupling between micro and macro-scale displacements and micro and macro-scale magnetic potentials, which allows to denote these as “multi-scale multi-physics” models. The field equations and boundary conditions are given together with the underlying energy functionals. An analysis of coupled dispersive waves is carried out to illustrate the behaviour of the models and their ability to simulate dispersive piezomagnetic waves.
•Novel dynamic piezomagnetic continuum models.•Full coupling between micro and macro-scale displacements and magnetic potentials.•Analysis of coupled piezomagnetic dispersive waves. |
doi_str_mv | 10.1016/j.wavemoti.2019.102402 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2314291854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165212519300290</els_id><sourcerecordid>2314291854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-85e640ea79833a6ae1a4f6ca981d5576ab012f1ecf9ba36a81afb5e98554dcfb3</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRsFb_BQl4Tt2PbLK5KcUvqHhQwdsy2czWDU227qaV-tebknr2NLzhvRnej5BLRmeMsvy6mX3DFlvfuxmnrByWPKP8iEyYKlSaCfFxTCaDUaaccXlKzmJsKKWsEOWEvD77zqfRwAoT6Oqk3ax6d9DWh0FC73wXE2-TZYDaYden2AVnPrFO6l0HrTPJ2uGPb2HZYe9MPCcnFlYRLw5zSt7v797mj-ni5eFpfrtIjVCqT5XEPKMIRamEgByQQWZzA6VitZRFDhVl3DI0tqxA5KAY2EpiqaTMamMrMSVX49118F8bjL1u_CZ0w0vNBct4yZTMBlc-ukzwMQa0eh1cC2GnGdV7gLrRfwD1HqAeAQ7BmzGIQ4etw6CjGeobrF1A0-vau_9O_AK5XH7K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314291854</pqid></control><display><type>article</type><title>Mono-scale and multi-scale formulations of gradient-enriched dynamic piezomagnetics</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Xu, Mingxiu ; Askes, Harm ; Gitman, Inna M.</creator><creatorcontrib>Xu, Mingxiu ; Askes, Harm ; Gitman, Inna M.</creatorcontrib><description>In this contribution, we combine and extend earlier work on static piezomagnetics and dynamic gradient elasticity to develop novel dynamic piezomagnetic continuum models. The governing equations can be formulated as a mono-scale model or as multi-scale models. The latter include full coupling between micro and macro-scale displacements and micro and macro-scale magnetic potentials, which allows to denote these as “multi-scale multi-physics” models. The field equations and boundary conditions are given together with the underlying energy functionals. An analysis of coupled dispersive waves is carried out to illustrate the behaviour of the models and their ability to simulate dispersive piezomagnetic waves.
•Novel dynamic piezomagnetic continuum models.•Full coupling between micro and macro-scale displacements and magnetic potentials.•Analysis of coupled piezomagnetic dispersive waves.</description><identifier>ISSN: 0165-2125</identifier><identifier>EISSN: 1878-433X</identifier><identifier>DOI: 10.1016/j.wavemoti.2019.102402</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Boundary conditions ; Computer simulation ; Continuum modeling ; Elasticity ; Generalised continuum ; Length scale ; Magnetism ; Mathematical models ; Multi-physics ; Multi-scale ; Nonlinear equations ; Piezomagnetics ; Scale models ; Wave dispersion ; Waveform analysis</subject><ispartof>Wave motion, 2019-11, Vol.91, p.102402, Article 102402</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-85e640ea79833a6ae1a4f6ca981d5576ab012f1ecf9ba36a81afb5e98554dcfb3</citedby><cites>FETCH-LOGICAL-c388t-85e640ea79833a6ae1a4f6ca981d5576ab012f1ecf9ba36a81afb5e98554dcfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Mingxiu</creatorcontrib><creatorcontrib>Askes, Harm</creatorcontrib><creatorcontrib>Gitman, Inna M.</creatorcontrib><title>Mono-scale and multi-scale formulations of gradient-enriched dynamic piezomagnetics</title><title>Wave motion</title><description>In this contribution, we combine and extend earlier work on static piezomagnetics and dynamic gradient elasticity to develop novel dynamic piezomagnetic continuum models. The governing equations can be formulated as a mono-scale model or as multi-scale models. The latter include full coupling between micro and macro-scale displacements and micro and macro-scale magnetic potentials, which allows to denote these as “multi-scale multi-physics” models. The field equations and boundary conditions are given together with the underlying energy functionals. An analysis of coupled dispersive waves is carried out to illustrate the behaviour of the models and their ability to simulate dispersive piezomagnetic waves.
•Novel dynamic piezomagnetic continuum models.•Full coupling between micro and macro-scale displacements and magnetic potentials.•Analysis of coupled piezomagnetic dispersive waves.</description><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Continuum modeling</subject><subject>Elasticity</subject><subject>Generalised continuum</subject><subject>Length scale</subject><subject>Magnetism</subject><subject>Mathematical models</subject><subject>Multi-physics</subject><subject>Multi-scale</subject><subject>Nonlinear equations</subject><subject>Piezomagnetics</subject><subject>Scale models</subject><subject>Wave dispersion</subject><subject>Waveform analysis</subject><issn>0165-2125</issn><issn>1878-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxRdRsFb_BQl4Tt2PbLK5KcUvqHhQwdsy2czWDU227qaV-tebknr2NLzhvRnej5BLRmeMsvy6mX3DFlvfuxmnrByWPKP8iEyYKlSaCfFxTCaDUaaccXlKzmJsKKWsEOWEvD77zqfRwAoT6Oqk3ax6d9DWh0FC73wXE2-TZYDaYden2AVnPrFO6l0HrTPJ2uGPb2HZYe9MPCcnFlYRLw5zSt7v797mj-ni5eFpfrtIjVCqT5XEPKMIRamEgByQQWZzA6VitZRFDhVl3DI0tqxA5KAY2EpiqaTMamMrMSVX49118F8bjL1u_CZ0w0vNBct4yZTMBlc-ukzwMQa0eh1cC2GnGdV7gLrRfwD1HqAeAQ7BmzGIQ4etw6CjGeobrF1A0-vau_9O_AK5XH7K</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Xu, Mingxiu</creator><creator>Askes, Harm</creator><creator>Gitman, Inna M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201911</creationdate><title>Mono-scale and multi-scale formulations of gradient-enriched dynamic piezomagnetics</title><author>Xu, Mingxiu ; Askes, Harm ; Gitman, Inna M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-85e640ea79833a6ae1a4f6ca981d5576ab012f1ecf9ba36a81afb5e98554dcfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Continuum modeling</topic><topic>Elasticity</topic><topic>Generalised continuum</topic><topic>Length scale</topic><topic>Magnetism</topic><topic>Mathematical models</topic><topic>Multi-physics</topic><topic>Multi-scale</topic><topic>Nonlinear equations</topic><topic>Piezomagnetics</topic><topic>Scale models</topic><topic>Wave dispersion</topic><topic>Waveform analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Mingxiu</creatorcontrib><creatorcontrib>Askes, Harm</creatorcontrib><creatorcontrib>Gitman, Inna M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Wave motion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Mingxiu</au><au>Askes, Harm</au><au>Gitman, Inna M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mono-scale and multi-scale formulations of gradient-enriched dynamic piezomagnetics</atitle><jtitle>Wave motion</jtitle><date>2019-11</date><risdate>2019</risdate><volume>91</volume><spage>102402</spage><pages>102402-</pages><artnum>102402</artnum><issn>0165-2125</issn><eissn>1878-433X</eissn><abstract>In this contribution, we combine and extend earlier work on static piezomagnetics and dynamic gradient elasticity to develop novel dynamic piezomagnetic continuum models. The governing equations can be formulated as a mono-scale model or as multi-scale models. The latter include full coupling between micro and macro-scale displacements and micro and macro-scale magnetic potentials, which allows to denote these as “multi-scale multi-physics” models. The field equations and boundary conditions are given together with the underlying energy functionals. An analysis of coupled dispersive waves is carried out to illustrate the behaviour of the models and their ability to simulate dispersive piezomagnetic waves.
•Novel dynamic piezomagnetic continuum models.•Full coupling between micro and macro-scale displacements and magnetic potentials.•Analysis of coupled piezomagnetic dispersive waves.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wavemoti.2019.102402</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-2125 |
ispartof | Wave motion, 2019-11, Vol.91, p.102402, Article 102402 |
issn | 0165-2125 1878-433X |
language | eng |
recordid | cdi_proquest_journals_2314291854 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Boundary conditions Computer simulation Continuum modeling Elasticity Generalised continuum Length scale Magnetism Mathematical models Multi-physics Multi-scale Nonlinear equations Piezomagnetics Scale models Wave dispersion Waveform analysis |
title | Mono-scale and multi-scale formulations of gradient-enriched dynamic piezomagnetics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mono-scale%20and%20multi-scale%20formulations%20of%20gradient-enriched%20dynamic%20piezomagnetics&rft.jtitle=Wave%20motion&rft.au=Xu,%20Mingxiu&rft.date=2019-11&rft.volume=91&rft.spage=102402&rft.pages=102402-&rft.artnum=102402&rft.issn=0165-2125&rft.eissn=1878-433X&rft_id=info:doi/10.1016/j.wavemoti.2019.102402&rft_dat=%3Cproquest_cross%3E2314291854%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-85e640ea79833a6ae1a4f6ca981d5576ab012f1ecf9ba36a81afb5e98554dcfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2314291854&rft_id=info:pmid/&rfr_iscdi=true |