Loading…

Mono-scale and multi-scale formulations of gradient-enriched dynamic piezomagnetics

In this contribution, we combine and extend earlier work on static piezomagnetics and dynamic gradient elasticity to develop novel dynamic piezomagnetic continuum models. The governing equations can be formulated as a mono-scale model or as multi-scale models. The latter include full coupling betwee...

Full description

Saved in:
Bibliographic Details
Published in:Wave motion 2019-11, Vol.91, p.102402, Article 102402
Main Authors: Xu, Mingxiu, Askes, Harm, Gitman, Inna M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-85e640ea79833a6ae1a4f6ca981d5576ab012f1ecf9ba36a81afb5e98554dcfb3
cites cdi_FETCH-LOGICAL-c388t-85e640ea79833a6ae1a4f6ca981d5576ab012f1ecf9ba36a81afb5e98554dcfb3
container_end_page
container_issue
container_start_page 102402
container_title Wave motion
container_volume 91
creator Xu, Mingxiu
Askes, Harm
Gitman, Inna M.
description In this contribution, we combine and extend earlier work on static piezomagnetics and dynamic gradient elasticity to develop novel dynamic piezomagnetic continuum models. The governing equations can be formulated as a mono-scale model or as multi-scale models. The latter include full coupling between micro and macro-scale displacements and micro and macro-scale magnetic potentials, which allows to denote these as “multi-scale multi-physics” models. The field equations and boundary conditions are given together with the underlying energy functionals. An analysis of coupled dispersive waves is carried out to illustrate the behaviour of the models and their ability to simulate dispersive piezomagnetic waves. •Novel dynamic piezomagnetic continuum models.•Full coupling between micro and macro-scale displacements and magnetic potentials.•Analysis of coupled piezomagnetic dispersive waves.
doi_str_mv 10.1016/j.wavemoti.2019.102402
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2314291854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165212519300290</els_id><sourcerecordid>2314291854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-85e640ea79833a6ae1a4f6ca981d5576ab012f1ecf9ba36a81afb5e98554dcfb3</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRsFb_BQl4Tt2PbLK5KcUvqHhQwdsy2czWDU227qaV-tebknr2NLzhvRnej5BLRmeMsvy6mX3DFlvfuxmnrByWPKP8iEyYKlSaCfFxTCaDUaaccXlKzmJsKKWsEOWEvD77zqfRwAoT6Oqk3ax6d9DWh0FC73wXE2-TZYDaYden2AVnPrFO6l0HrTPJ2uGPb2HZYe9MPCcnFlYRLw5zSt7v797mj-ni5eFpfrtIjVCqT5XEPKMIRamEgByQQWZzA6VitZRFDhVl3DI0tqxA5KAY2EpiqaTMamMrMSVX49118F8bjL1u_CZ0w0vNBct4yZTMBlc-ukzwMQa0eh1cC2GnGdV7gLrRfwD1HqAeAQ7BmzGIQ4etw6CjGeobrF1A0-vau_9O_AK5XH7K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314291854</pqid></control><display><type>article</type><title>Mono-scale and multi-scale formulations of gradient-enriched dynamic piezomagnetics</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Xu, Mingxiu ; Askes, Harm ; Gitman, Inna M.</creator><creatorcontrib>Xu, Mingxiu ; Askes, Harm ; Gitman, Inna M.</creatorcontrib><description>In this contribution, we combine and extend earlier work on static piezomagnetics and dynamic gradient elasticity to develop novel dynamic piezomagnetic continuum models. The governing equations can be formulated as a mono-scale model or as multi-scale models. The latter include full coupling between micro and macro-scale displacements and micro and macro-scale magnetic potentials, which allows to denote these as “multi-scale multi-physics” models. The field equations and boundary conditions are given together with the underlying energy functionals. An analysis of coupled dispersive waves is carried out to illustrate the behaviour of the models and their ability to simulate dispersive piezomagnetic waves. •Novel dynamic piezomagnetic continuum models.•Full coupling between micro and macro-scale displacements and magnetic potentials.•Analysis of coupled piezomagnetic dispersive waves.</description><identifier>ISSN: 0165-2125</identifier><identifier>EISSN: 1878-433X</identifier><identifier>DOI: 10.1016/j.wavemoti.2019.102402</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Boundary conditions ; Computer simulation ; Continuum modeling ; Elasticity ; Generalised continuum ; Length scale ; Magnetism ; Mathematical models ; Multi-physics ; Multi-scale ; Nonlinear equations ; Piezomagnetics ; Scale models ; Wave dispersion ; Waveform analysis</subject><ispartof>Wave motion, 2019-11, Vol.91, p.102402, Article 102402</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-85e640ea79833a6ae1a4f6ca981d5576ab012f1ecf9ba36a81afb5e98554dcfb3</citedby><cites>FETCH-LOGICAL-c388t-85e640ea79833a6ae1a4f6ca981d5576ab012f1ecf9ba36a81afb5e98554dcfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Mingxiu</creatorcontrib><creatorcontrib>Askes, Harm</creatorcontrib><creatorcontrib>Gitman, Inna M.</creatorcontrib><title>Mono-scale and multi-scale formulations of gradient-enriched dynamic piezomagnetics</title><title>Wave motion</title><description>In this contribution, we combine and extend earlier work on static piezomagnetics and dynamic gradient elasticity to develop novel dynamic piezomagnetic continuum models. The governing equations can be formulated as a mono-scale model or as multi-scale models. The latter include full coupling between micro and macro-scale displacements and micro and macro-scale magnetic potentials, which allows to denote these as “multi-scale multi-physics” models. The field equations and boundary conditions are given together with the underlying energy functionals. An analysis of coupled dispersive waves is carried out to illustrate the behaviour of the models and their ability to simulate dispersive piezomagnetic waves. •Novel dynamic piezomagnetic continuum models.•Full coupling between micro and macro-scale displacements and magnetic potentials.•Analysis of coupled piezomagnetic dispersive waves.</description><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Continuum modeling</subject><subject>Elasticity</subject><subject>Generalised continuum</subject><subject>Length scale</subject><subject>Magnetism</subject><subject>Mathematical models</subject><subject>Multi-physics</subject><subject>Multi-scale</subject><subject>Nonlinear equations</subject><subject>Piezomagnetics</subject><subject>Scale models</subject><subject>Wave dispersion</subject><subject>Waveform analysis</subject><issn>0165-2125</issn><issn>1878-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxRdRsFb_BQl4Tt2PbLK5KcUvqHhQwdsy2czWDU227qaV-tebknr2NLzhvRnej5BLRmeMsvy6mX3DFlvfuxmnrByWPKP8iEyYKlSaCfFxTCaDUaaccXlKzmJsKKWsEOWEvD77zqfRwAoT6Oqk3ax6d9DWh0FC73wXE2-TZYDaYden2AVnPrFO6l0HrTPJ2uGPb2HZYe9MPCcnFlYRLw5zSt7v797mj-ni5eFpfrtIjVCqT5XEPKMIRamEgByQQWZzA6VitZRFDhVl3DI0tqxA5KAY2EpiqaTMamMrMSVX49118F8bjL1u_CZ0w0vNBct4yZTMBlc-ukzwMQa0eh1cC2GnGdV7gLrRfwD1HqAeAQ7BmzGIQ4etw6CjGeobrF1A0-vau_9O_AK5XH7K</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Xu, Mingxiu</creator><creator>Askes, Harm</creator><creator>Gitman, Inna M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201911</creationdate><title>Mono-scale and multi-scale formulations of gradient-enriched dynamic piezomagnetics</title><author>Xu, Mingxiu ; Askes, Harm ; Gitman, Inna M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-85e640ea79833a6ae1a4f6ca981d5576ab012f1ecf9ba36a81afb5e98554dcfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Continuum modeling</topic><topic>Elasticity</topic><topic>Generalised continuum</topic><topic>Length scale</topic><topic>Magnetism</topic><topic>Mathematical models</topic><topic>Multi-physics</topic><topic>Multi-scale</topic><topic>Nonlinear equations</topic><topic>Piezomagnetics</topic><topic>Scale models</topic><topic>Wave dispersion</topic><topic>Waveform analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Mingxiu</creatorcontrib><creatorcontrib>Askes, Harm</creatorcontrib><creatorcontrib>Gitman, Inna M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Wave motion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Mingxiu</au><au>Askes, Harm</au><au>Gitman, Inna M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mono-scale and multi-scale formulations of gradient-enriched dynamic piezomagnetics</atitle><jtitle>Wave motion</jtitle><date>2019-11</date><risdate>2019</risdate><volume>91</volume><spage>102402</spage><pages>102402-</pages><artnum>102402</artnum><issn>0165-2125</issn><eissn>1878-433X</eissn><abstract>In this contribution, we combine and extend earlier work on static piezomagnetics and dynamic gradient elasticity to develop novel dynamic piezomagnetic continuum models. The governing equations can be formulated as a mono-scale model or as multi-scale models. The latter include full coupling between micro and macro-scale displacements and micro and macro-scale magnetic potentials, which allows to denote these as “multi-scale multi-physics” models. The field equations and boundary conditions are given together with the underlying energy functionals. An analysis of coupled dispersive waves is carried out to illustrate the behaviour of the models and their ability to simulate dispersive piezomagnetic waves. •Novel dynamic piezomagnetic continuum models.•Full coupling between micro and macro-scale displacements and magnetic potentials.•Analysis of coupled piezomagnetic dispersive waves.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wavemoti.2019.102402</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-2125
ispartof Wave motion, 2019-11, Vol.91, p.102402, Article 102402
issn 0165-2125
1878-433X
language eng
recordid cdi_proquest_journals_2314291854
source ScienceDirect Freedom Collection 2022-2024
subjects Boundary conditions
Computer simulation
Continuum modeling
Elasticity
Generalised continuum
Length scale
Magnetism
Mathematical models
Multi-physics
Multi-scale
Nonlinear equations
Piezomagnetics
Scale models
Wave dispersion
Waveform analysis
title Mono-scale and multi-scale formulations of gradient-enriched dynamic piezomagnetics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mono-scale%20and%20multi-scale%20formulations%20of%20gradient-enriched%20dynamic%20piezomagnetics&rft.jtitle=Wave%20motion&rft.au=Xu,%20Mingxiu&rft.date=2019-11&rft.volume=91&rft.spage=102402&rft.pages=102402-&rft.artnum=102402&rft.issn=0165-2125&rft.eissn=1878-433X&rft_id=info:doi/10.1016/j.wavemoti.2019.102402&rft_dat=%3Cproquest_cross%3E2314291854%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-85e640ea79833a6ae1a4f6ca981d5576ab012f1ecf9ba36a81afb5e98554dcfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2314291854&rft_id=info:pmid/&rfr_iscdi=true