Loading…
Structured Sparsification of Gated Recurrent Neural Networks
Recently, a lot of techniques were developed to sparsify the weights of neural networks and to remove networks' structure units, e.g. neurons. We adjust the existing sparsification approaches to the gated recurrent architectures. Specifically, in addition to the sparsification of weights and ne...
Saved in:
Published in: | arXiv.org 2019-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lobacheva, Ekaterina Chirkova, Nadezhda Markovich, Alexander Vetrov, Dmitry |
description | Recently, a lot of techniques were developed to sparsify the weights of neural networks and to remove networks' structure units, e.g. neurons. We adjust the existing sparsification approaches to the gated recurrent architectures. Specifically, in addition to the sparsification of weights and neurons, we propose sparsifying the preactivations of gates. This makes some gates constant and simplifies LSTM structure. We test our approach on the text classification and language modeling tasks. We observe that the resulting structure of gate sparsity depends on the task and connect the learned structure to the specifics of the particular tasks. Our method also improves neuron-wise compression of the model in most of the tasks. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2314447128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314447128</sourcerecordid><originalsourceid>FETCH-proquest_journals_23144471283</originalsourceid><addsrcrecordid>eNqNissKwjAQAIMgWLT_EPBcaDep7cGb-Dh5sN5LSBNoLU3d7OLv24Mf4GlgZlYiAaWKrNYAG5HGOOR5DocKylIl4tgQsiVG18lmNhh731tDfZhk8PJqaPEPZxnRTSTvjtGMC-gT8BV3Yu3NGF3641bsL-fn6ZbNGN7sIrVDYJyW1IIqtNZVAbX67_oCdZE39Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314447128</pqid></control><display><type>article</type><title>Structured Sparsification of Gated Recurrent Neural Networks</title><source>Publicly Available Content Database</source><creator>Lobacheva, Ekaterina ; Chirkova, Nadezhda ; Markovich, Alexander ; Vetrov, Dmitry</creator><creatorcontrib>Lobacheva, Ekaterina ; Chirkova, Nadezhda ; Markovich, Alexander ; Vetrov, Dmitry</creatorcontrib><description>Recently, a lot of techniques were developed to sparsify the weights of neural networks and to remove networks' structure units, e.g. neurons. We adjust the existing sparsification approaches to the gated recurrent architectures. Specifically, in addition to the sparsification of weights and neurons, we propose sparsifying the preactivations of gates. This makes some gates constant and simplifies LSTM structure. We test our approach on the text classification and language modeling tasks. We observe that the resulting structure of gate sparsity depends on the task and connect the learned structure to the specifics of the particular tasks. Our method also improves neuron-wise compression of the model in most of the tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Neural networks ; Neurons ; Recurrent neural networks</subject><ispartof>arXiv.org, 2019-11</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2314447128?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Lobacheva, Ekaterina</creatorcontrib><creatorcontrib>Chirkova, Nadezhda</creatorcontrib><creatorcontrib>Markovich, Alexander</creatorcontrib><creatorcontrib>Vetrov, Dmitry</creatorcontrib><title>Structured Sparsification of Gated Recurrent Neural Networks</title><title>arXiv.org</title><description>Recently, a lot of techniques were developed to sparsify the weights of neural networks and to remove networks' structure units, e.g. neurons. We adjust the existing sparsification approaches to the gated recurrent architectures. Specifically, in addition to the sparsification of weights and neurons, we propose sparsifying the preactivations of gates. This makes some gates constant and simplifies LSTM structure. We test our approach on the text classification and language modeling tasks. We observe that the resulting structure of gate sparsity depends on the task and connect the learned structure to the specifics of the particular tasks. Our method also improves neuron-wise compression of the model in most of the tasks.</description><subject>Neural networks</subject><subject>Neurons</subject><subject>Recurrent neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNissKwjAQAIMgWLT_EPBcaDep7cGb-Dh5sN5LSBNoLU3d7OLv24Mf4GlgZlYiAaWKrNYAG5HGOOR5DocKylIl4tgQsiVG18lmNhh731tDfZhk8PJqaPEPZxnRTSTvjtGMC-gT8BV3Yu3NGF3641bsL-fn6ZbNGN7sIrVDYJyW1IIqtNZVAbX67_oCdZE39Q</recordid><startdate>20191113</startdate><enddate>20191113</enddate><creator>Lobacheva, Ekaterina</creator><creator>Chirkova, Nadezhda</creator><creator>Markovich, Alexander</creator><creator>Vetrov, Dmitry</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191113</creationdate><title>Structured Sparsification of Gated Recurrent Neural Networks</title><author>Lobacheva, Ekaterina ; Chirkova, Nadezhda ; Markovich, Alexander ; Vetrov, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23144471283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Neural networks</topic><topic>Neurons</topic><topic>Recurrent neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Lobacheva, Ekaterina</creatorcontrib><creatorcontrib>Chirkova, Nadezhda</creatorcontrib><creatorcontrib>Markovich, Alexander</creatorcontrib><creatorcontrib>Vetrov, Dmitry</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lobacheva, Ekaterina</au><au>Chirkova, Nadezhda</au><au>Markovich, Alexander</au><au>Vetrov, Dmitry</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Structured Sparsification of Gated Recurrent Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2019-11-13</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Recently, a lot of techniques were developed to sparsify the weights of neural networks and to remove networks' structure units, e.g. neurons. We adjust the existing sparsification approaches to the gated recurrent architectures. Specifically, in addition to the sparsification of weights and neurons, we propose sparsifying the preactivations of gates. This makes some gates constant and simplifies LSTM structure. We test our approach on the text classification and language modeling tasks. We observe that the resulting structure of gate sparsity depends on the task and connect the learned structure to the specifics of the particular tasks. Our method also improves neuron-wise compression of the model in most of the tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2314447128 |
source | Publicly Available Content Database |
subjects | Neural networks Neurons Recurrent neural networks |
title | Structured Sparsification of Gated Recurrent Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Structured%20Sparsification%20of%20Gated%20Recurrent%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Lobacheva,%20Ekaterina&rft.date=2019-11-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2314447128%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23144471283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2314447128&rft_id=info:pmid/&rfr_iscdi=true |