Loading…

Continuous and holomorphic semicocycles in Banach spaces

We study some fundamental properties of semicocycles over semigroups of self-mappings of a domain in a Banach space. We prove that any semicocycle over a jointly continuous semigroup is itself jointly continuous. For semicocycles over semigroups which have generator, we establish a sufficient condit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of evolution equations 2019-12, Vol.19 (4), p.1199-1221
Main Authors: Elin, Mark, Jacobzon, Fiana, Katriel, Guy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-41668ffedc439c75ad73ccfb7c107ec3d9d6156c3efc641bd8f8d02291897cce3
cites cdi_FETCH-LOGICAL-c319t-41668ffedc439c75ad73ccfb7c107ec3d9d6156c3efc641bd8f8d02291897cce3
container_end_page 1221
container_issue 4
container_start_page 1199
container_title Journal of evolution equations
container_volume 19
creator Elin, Mark
Jacobzon, Fiana
Katriel, Guy
description We study some fundamental properties of semicocycles over semigroups of self-mappings of a domain in a Banach space. We prove that any semicocycle over a jointly continuous semigroup is itself jointly continuous. For semicocycles over semigroups which have generator, we establish a sufficient condition for differentiability with respect to the time variable, and hence for the semicocycle to satisfy a linear evolution problem, giving rise to the notion of ‘generator’ of a semicocycle. Bounds on the growth of a semicocycle with respect to the time variable are given in terms of this generator. Special consideration is given to the case of holomorphic semicocycles, for which we prove an exact correspondence between certain uniform continuity properties of a semicocyle and boundedness properties of its generator.
doi_str_mv 10.1007/s00028-019-00509-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2314796736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314796736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-41668ffedc439c75ad73ccfb7c107ec3d9d6156c3efc641bd8f8d02291897cce3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5giMRuu7cSPESpeUiUWmC332qap2jjYzdB_TyAgNqZ7h_OdI32EXDK4ZgDqpgAA1xSYoQANGNockRmreU0FB378-zNjTslZKRsAphrdzIhepG7fdkMaSuU6X63TNu1S7tctViXsWkx4wG0oVdtVd65zuK5K7zCUc3IS3baEi587J28P96-LJ7p8eXxe3C4pjmt7WjMpdYzBYy0MqsZ5JRDjSiEDFVB44yVrJIoQUdZs5XXUHjg3TBuFGMScXE29fU4fQyh7u0lD7sZJywWrlZFKyDHFpxTmVEoO0fa53bl8sAzslyE7GbKjIfttyDYjJCaojOHuPeS_6n-oT6ibaQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314796736</pqid></control><display><type>article</type><title>Continuous and holomorphic semicocycles in Banach spaces</title><source>Springer Link</source><creator>Elin, Mark ; Jacobzon, Fiana ; Katriel, Guy</creator><creatorcontrib>Elin, Mark ; Jacobzon, Fiana ; Katriel, Guy</creatorcontrib><description>We study some fundamental properties of semicocycles over semigroups of self-mappings of a domain in a Banach space. We prove that any semicocycle over a jointly continuous semigroup is itself jointly continuous. For semicocycles over semigroups which have generator, we establish a sufficient condition for differentiability with respect to the time variable, and hence for the semicocycle to satisfy a linear evolution problem, giving rise to the notion of ‘generator’ of a semicocycle. Bounds on the growth of a semicocycle with respect to the time variable are given in terms of this generator. Special consideration is given to the case of holomorphic semicocycles, for which we prove an exact correspondence between certain uniform continuity properties of a semicocyle and boundedness properties of its generator.</description><identifier>ISSN: 1424-3199</identifier><identifier>EISSN: 1424-3202</identifier><identifier>DOI: 10.1007/s00028-019-00509-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Banach spaces ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Properties (attributes)</subject><ispartof>Journal of evolution equations, 2019-12, Vol.19 (4), p.1199-1221</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-41668ffedc439c75ad73ccfb7c107ec3d9d6156c3efc641bd8f8d02291897cce3</citedby><cites>FETCH-LOGICAL-c319t-41668ffedc439c75ad73ccfb7c107ec3d9d6156c3efc641bd8f8d02291897cce3</cites><orcidid>0000-0002-0348-6451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Elin, Mark</creatorcontrib><creatorcontrib>Jacobzon, Fiana</creatorcontrib><creatorcontrib>Katriel, Guy</creatorcontrib><title>Continuous and holomorphic semicocycles in Banach spaces</title><title>Journal of evolution equations</title><addtitle>J. Evol. Equ</addtitle><description>We study some fundamental properties of semicocycles over semigroups of self-mappings of a domain in a Banach space. We prove that any semicocycle over a jointly continuous semigroup is itself jointly continuous. For semicocycles over semigroups which have generator, we establish a sufficient condition for differentiability with respect to the time variable, and hence for the semicocycle to satisfy a linear evolution problem, giving rise to the notion of ‘generator’ of a semicocycle. Bounds on the growth of a semicocycle with respect to the time variable are given in terms of this generator. Special consideration is given to the case of holomorphic semicocycles, for which we prove an exact correspondence between certain uniform continuity properties of a semicocyle and boundedness properties of its generator.</description><subject>Analysis</subject><subject>Banach spaces</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Properties (attributes)</subject><issn>1424-3199</issn><issn>1424-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwB5giMRuu7cSPESpeUiUWmC332qap2jjYzdB_TyAgNqZ7h_OdI32EXDK4ZgDqpgAA1xSYoQANGNockRmreU0FB378-zNjTslZKRsAphrdzIhepG7fdkMaSuU6X63TNu1S7tctViXsWkx4wG0oVdtVd65zuK5K7zCUc3IS3baEi587J28P96-LJ7p8eXxe3C4pjmt7WjMpdYzBYy0MqsZ5JRDjSiEDFVB44yVrJIoQUdZs5XXUHjg3TBuFGMScXE29fU4fQyh7u0lD7sZJywWrlZFKyDHFpxTmVEoO0fa53bl8sAzslyE7GbKjIfttyDYjJCaojOHuPeS_6n-oT6ibaQI</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Elin, Mark</creator><creator>Jacobzon, Fiana</creator><creator>Katriel, Guy</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0348-6451</orcidid></search><sort><creationdate>20191201</creationdate><title>Continuous and holomorphic semicocycles in Banach spaces</title><author>Elin, Mark ; Jacobzon, Fiana ; Katriel, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-41668ffedc439c75ad73ccfb7c107ec3d9d6156c3efc641bd8f8d02291897cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Banach spaces</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Properties (attributes)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elin, Mark</creatorcontrib><creatorcontrib>Jacobzon, Fiana</creatorcontrib><creatorcontrib>Katriel, Guy</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of evolution equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elin, Mark</au><au>Jacobzon, Fiana</au><au>Katriel, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous and holomorphic semicocycles in Banach spaces</atitle><jtitle>Journal of evolution equations</jtitle><stitle>J. Evol. Equ</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>19</volume><issue>4</issue><spage>1199</spage><epage>1221</epage><pages>1199-1221</pages><issn>1424-3199</issn><eissn>1424-3202</eissn><abstract>We study some fundamental properties of semicocycles over semigroups of self-mappings of a domain in a Banach space. We prove that any semicocycle over a jointly continuous semigroup is itself jointly continuous. For semicocycles over semigroups which have generator, we establish a sufficient condition for differentiability with respect to the time variable, and hence for the semicocycle to satisfy a linear evolution problem, giving rise to the notion of ‘generator’ of a semicocycle. Bounds on the growth of a semicocycle with respect to the time variable are given in terms of this generator. Special consideration is given to the case of holomorphic semicocycles, for which we prove an exact correspondence between certain uniform continuity properties of a semicocyle and boundedness properties of its generator.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00028-019-00509-5</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-0348-6451</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1424-3199
ispartof Journal of evolution equations, 2019-12, Vol.19 (4), p.1199-1221
issn 1424-3199
1424-3202
language eng
recordid cdi_proquest_journals_2314796736
source Springer Link
subjects Analysis
Banach spaces
Mathematical analysis
Mathematics
Mathematics and Statistics
Properties (attributes)
title Continuous and holomorphic semicocycles in Banach spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20and%20holomorphic%20semicocycles%20in%20Banach%20spaces&rft.jtitle=Journal%20of%20evolution%20equations&rft.au=Elin,%20Mark&rft.date=2019-12-01&rft.volume=19&rft.issue=4&rft.spage=1199&rft.epage=1221&rft.pages=1199-1221&rft.issn=1424-3199&rft.eissn=1424-3202&rft_id=info:doi/10.1007/s00028-019-00509-5&rft_dat=%3Cproquest_cross%3E2314796736%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-41668ffedc439c75ad73ccfb7c107ec3d9d6156c3efc641bd8f8d02291897cce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2314796736&rft_id=info:pmid/&rfr_iscdi=true