Loading…
Solvability analysis of a special type fractional differential system
Obtained some new and original results in investigation of solutions of the boundary-value problems (BVPs) for fractional differential systems (FDS), subjected to anti-periodic boundary conditions. The approximate solution of the given BVP is built in the form of successive sequences of functions by...
Saved in:
Published in: | Computational & applied mathematics 2020-03, Vol.39 (1), Article 3 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-591e3e978ec701e88b11459b82500b8901c5898766dd85372f1d3619f997cb8a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-591e3e978ec701e88b11459b82500b8901c5898766dd85372f1d3619f997cb8a3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 39 |
creator | Marynets, Kateryna |
description | Obtained some new and original results in investigation of solutions of the boundary-value problems (BVPs) for fractional differential systems (FDS), subjected to anti-periodic boundary conditions. The approximate solution of the given BVP is built in the form of successive sequences of functions by using main ideas of the numerical–analytic technique (Marynets in Electron J Qual Theory Differ Equ 6(2016):1–14 (2016); Ronto and Marynets in Nonlinear Oscil 14:379–413 (2012), Ronto et al. in Tatra Mt Math Publ 63:247–267 (2015). The numerical values of the unknown vector-parameter are solutions of the so-called ‘determining’ system of algebraic or transcendental equations. |
doi_str_mv | 10.1007/s40314-019-0981-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2315544798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315544798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-591e3e978ec701e88b11459b82500b8901c5898766dd85372f1d3619f997cb8a3</originalsourceid><addsrcrecordid>eNp1kMFKxDAURYMoOI5-gLuA6-h7TdIkSxlGRxhwoa5D2ibSoTOtSUbo39uhgitXb3HPvTwOIbcI9wigHpIAjoIBGgZGI1NnZIEaFAMOxTlZFAXXjJfAL8lVSjsArlCIBVm_9d23q9quzSN1B9eNqU20D9TRNPi6dR3N4-BpiK7ObT8BtGlD8NEf8ilMY8p-f00uguuSv_m9S_LxtH5fbdj29fll9bhlNZcmM2nQc2-U9rUC9FpXiEKaShcSoNIGsJbaaFWWTaMlV0XAhpdogjGqrrTjS3I37w6x_zr6lO2uP8bpqWQLjlIKoYyeKJypOvYpRR_sENu9i6NFsCdbdrZlJ1v2ZMuqqVPMnTSxh08f_5b_L_0A_2prtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315544798</pqid></control><display><type>article</type><title>Solvability analysis of a special type fractional differential system</title><source>Springer Nature</source><creator>Marynets, Kateryna</creator><creatorcontrib>Marynets, Kateryna</creatorcontrib><description>Obtained some new and original results in investigation of solutions of the boundary-value problems (BVPs) for fractional differential systems (FDS), subjected to anti-periodic boundary conditions. The approximate solution of the given BVP is built in the form of successive sequences of functions by using main ideas of the numerical–analytic technique (Marynets in Electron J Qual Theory Differ Equ 6(2016):1–14 (2016); Ronto and Marynets in Nonlinear Oscil 14:379–413 (2012), Ronto et al. in Tatra Mt Math Publ 63:247–267 (2015). The numerical values of the unknown vector-parameter are solutions of the so-called ‘determining’ system of algebraic or transcendental equations.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-019-0981-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Boundary conditions ; Boundary value problems ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics</subject><ispartof>Computational & applied mathematics, 2020-03, Vol.39 (1), Article 3</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019</rights><rights>2019© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-591e3e978ec701e88b11459b82500b8901c5898766dd85372f1d3619f997cb8a3</citedby><cites>FETCH-LOGICAL-c359t-591e3e978ec701e88b11459b82500b8901c5898766dd85372f1d3619f997cb8a3</cites><orcidid>0000-0002-0043-6336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marynets, Kateryna</creatorcontrib><title>Solvability analysis of a special type fractional differential system</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>Obtained some new and original results in investigation of solutions of the boundary-value problems (BVPs) for fractional differential systems (FDS), subjected to anti-periodic boundary conditions. The approximate solution of the given BVP is built in the form of successive sequences of functions by using main ideas of the numerical–analytic technique (Marynets in Electron J Qual Theory Differ Equ 6(2016):1–14 (2016); Ronto and Marynets in Nonlinear Oscil 14:379–413 (2012), Ronto et al. in Tatra Mt Math Publ 63:247–267 (2015). The numerical values of the unknown vector-parameter are solutions of the so-called ‘determining’ system of algebraic or transcendental equations.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAURYMoOI5-gLuA6-h7TdIkSxlGRxhwoa5D2ibSoTOtSUbo39uhgitXb3HPvTwOIbcI9wigHpIAjoIBGgZGI1NnZIEaFAMOxTlZFAXXjJfAL8lVSjsArlCIBVm_9d23q9quzSN1B9eNqU20D9TRNPi6dR3N4-BpiK7ObT8BtGlD8NEf8ilMY8p-f00uguuSv_m9S_LxtH5fbdj29fll9bhlNZcmM2nQc2-U9rUC9FpXiEKaShcSoNIGsJbaaFWWTaMlV0XAhpdogjGqrrTjS3I37w6x_zr6lO2uP8bpqWQLjlIKoYyeKJypOvYpRR_sENu9i6NFsCdbdrZlJ1v2ZMuqqVPMnTSxh08f_5b_L_0A_2prtQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Marynets, Kateryna</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0043-6336</orcidid></search><sort><creationdate>20200301</creationdate><title>Solvability analysis of a special type fractional differential system</title><author>Marynets, Kateryna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-591e3e978ec701e88b11459b82500b8901c5898766dd85372f1d3619f997cb8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marynets, Kateryna</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marynets, Kateryna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvability analysis of a special type fractional differential system</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>39</volume><issue>1</issue><artnum>3</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>Obtained some new and original results in investigation of solutions of the boundary-value problems (BVPs) for fractional differential systems (FDS), subjected to anti-periodic boundary conditions. The approximate solution of the given BVP is built in the form of successive sequences of functions by using main ideas of the numerical–analytic technique (Marynets in Electron J Qual Theory Differ Equ 6(2016):1–14 (2016); Ronto and Marynets in Nonlinear Oscil 14:379–413 (2012), Ronto et al. in Tatra Mt Math Publ 63:247–267 (2015). The numerical values of the unknown vector-parameter are solutions of the so-called ‘determining’ system of algebraic or transcendental equations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-019-0981-7</doi><orcidid>https://orcid.org/0000-0002-0043-6336</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2020-03, Vol.39 (1), Article 3 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2315544798 |
source | Springer Nature |
subjects | Applications of Mathematics Applied physics Boundary conditions Boundary value problems Computational mathematics Computational Mathematics and Numerical Analysis Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics |
title | Solvability analysis of a special type fractional differential system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvability%20analysis%20of%20a%20special%20type%20fractional%20differential%20system&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Marynets,%20Kateryna&rft.date=2020-03-01&rft.volume=39&rft.issue=1&rft.artnum=3&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-019-0981-7&rft_dat=%3Cproquest_cross%3E2315544798%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-591e3e978ec701e88b11459b82500b8901c5898766dd85372f1d3619f997cb8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2315544798&rft_id=info:pmid/&rfr_iscdi=true |