Loading…

Solvability analysis of a special type fractional differential system

Obtained some new and original results in investigation of solutions of the boundary-value problems (BVPs) for fractional differential systems (FDS), subjected to anti-periodic boundary conditions. The approximate solution of the given BVP is built in the form of successive sequences of functions by...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics 2020-03, Vol.39 (1), Article 3
Main Author: Marynets, Kateryna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-591e3e978ec701e88b11459b82500b8901c5898766dd85372f1d3619f997cb8a3
cites cdi_FETCH-LOGICAL-c359t-591e3e978ec701e88b11459b82500b8901c5898766dd85372f1d3619f997cb8a3
container_end_page
container_issue 1
container_start_page
container_title Computational & applied mathematics
container_volume 39
creator Marynets, Kateryna
description Obtained some new and original results in investigation of solutions of the boundary-value problems (BVPs) for fractional differential systems (FDS), subjected to anti-periodic boundary conditions. The approximate solution of the given BVP is built in the form of successive sequences of functions by using main ideas of the numerical–analytic technique (Marynets in Electron J Qual Theory Differ Equ 6(2016):1–14 (2016); Ronto and Marynets in Nonlinear Oscil 14:379–413 (2012), Ronto et al. in Tatra Mt Math Publ 63:247–267 (2015). The numerical values of the unknown vector-parameter are solutions of the so-called ‘determining’ system of algebraic or transcendental equations.
doi_str_mv 10.1007/s40314-019-0981-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2315544798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315544798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-591e3e978ec701e88b11459b82500b8901c5898766dd85372f1d3619f997cb8a3</originalsourceid><addsrcrecordid>eNp1kMFKxDAURYMoOI5-gLuA6-h7TdIkSxlGRxhwoa5D2ibSoTOtSUbo39uhgitXb3HPvTwOIbcI9wigHpIAjoIBGgZGI1NnZIEaFAMOxTlZFAXXjJfAL8lVSjsArlCIBVm_9d23q9quzSN1B9eNqU20D9TRNPi6dR3N4-BpiK7ObT8BtGlD8NEf8ilMY8p-f00uguuSv_m9S_LxtH5fbdj29fll9bhlNZcmM2nQc2-U9rUC9FpXiEKaShcSoNIGsJbaaFWWTaMlV0XAhpdogjGqrrTjS3I37w6x_zr6lO2uP8bpqWQLjlIKoYyeKJypOvYpRR_sENu9i6NFsCdbdrZlJ1v2ZMuqqVPMnTSxh08f_5b_L_0A_2prtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315544798</pqid></control><display><type>article</type><title>Solvability analysis of a special type fractional differential system</title><source>Springer Nature</source><creator>Marynets, Kateryna</creator><creatorcontrib>Marynets, Kateryna</creatorcontrib><description>Obtained some new and original results in investigation of solutions of the boundary-value problems (BVPs) for fractional differential systems (FDS), subjected to anti-periodic boundary conditions. The approximate solution of the given BVP is built in the form of successive sequences of functions by using main ideas of the numerical–analytic technique (Marynets in Electron J Qual Theory Differ Equ 6(2016):1–14 (2016); Ronto and Marynets in Nonlinear Oscil 14:379–413 (2012), Ronto et al. in Tatra Mt Math Publ 63:247–267 (2015). The numerical values of the unknown vector-parameter are solutions of the so-called ‘determining’ system of algebraic or transcendental equations.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-019-0981-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Boundary conditions ; Boundary value problems ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics</subject><ispartof>Computational &amp; applied mathematics, 2020-03, Vol.39 (1), Article 3</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019</rights><rights>2019© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-591e3e978ec701e88b11459b82500b8901c5898766dd85372f1d3619f997cb8a3</citedby><cites>FETCH-LOGICAL-c359t-591e3e978ec701e88b11459b82500b8901c5898766dd85372f1d3619f997cb8a3</cites><orcidid>0000-0002-0043-6336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marynets, Kateryna</creatorcontrib><title>Solvability analysis of a special type fractional differential system</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>Obtained some new and original results in investigation of solutions of the boundary-value problems (BVPs) for fractional differential systems (FDS), subjected to anti-periodic boundary conditions. The approximate solution of the given BVP is built in the form of successive sequences of functions by using main ideas of the numerical–analytic technique (Marynets in Electron J Qual Theory Differ Equ 6(2016):1–14 (2016); Ronto and Marynets in Nonlinear Oscil 14:379–413 (2012), Ronto et al. in Tatra Mt Math Publ 63:247–267 (2015). The numerical values of the unknown vector-parameter are solutions of the so-called ‘determining’ system of algebraic or transcendental equations.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAURYMoOI5-gLuA6-h7TdIkSxlGRxhwoa5D2ibSoTOtSUbo39uhgitXb3HPvTwOIbcI9wigHpIAjoIBGgZGI1NnZIEaFAMOxTlZFAXXjJfAL8lVSjsArlCIBVm_9d23q9quzSN1B9eNqU20D9TRNPi6dR3N4-BpiK7ObT8BtGlD8NEf8ilMY8p-f00uguuSv_m9S_LxtH5fbdj29fll9bhlNZcmM2nQc2-U9rUC9FpXiEKaShcSoNIGsJbaaFWWTaMlV0XAhpdogjGqrrTjS3I37w6x_zr6lO2uP8bpqWQLjlIKoYyeKJypOvYpRR_sENu9i6NFsCdbdrZlJ1v2ZMuqqVPMnTSxh08f_5b_L_0A_2prtQ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Marynets, Kateryna</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0043-6336</orcidid></search><sort><creationdate>20200301</creationdate><title>Solvability analysis of a special type fractional differential system</title><author>Marynets, Kateryna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-591e3e978ec701e88b11459b82500b8901c5898766dd85372f1d3619f997cb8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marynets, Kateryna</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marynets, Kateryna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvability analysis of a special type fractional differential system</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>39</volume><issue>1</issue><artnum>3</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>Obtained some new and original results in investigation of solutions of the boundary-value problems (BVPs) for fractional differential systems (FDS), subjected to anti-periodic boundary conditions. The approximate solution of the given BVP is built in the form of successive sequences of functions by using main ideas of the numerical–analytic technique (Marynets in Electron J Qual Theory Differ Equ 6(2016):1–14 (2016); Ronto and Marynets in Nonlinear Oscil 14:379–413 (2012), Ronto et al. in Tatra Mt Math Publ 63:247–267 (2015). The numerical values of the unknown vector-parameter are solutions of the so-called ‘determining’ system of algebraic or transcendental equations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-019-0981-7</doi><orcidid>https://orcid.org/0000-0002-0043-6336</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2020-03, Vol.39 (1), Article 3
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2315544798
source Springer Nature
subjects Applications of Mathematics
Applied physics
Boundary conditions
Boundary value problems
Computational mathematics
Computational Mathematics and Numerical Analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
title Solvability analysis of a special type fractional differential system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvability%20analysis%20of%20a%20special%20type%20fractional%20differential%20system&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Marynets,%20Kateryna&rft.date=2020-03-01&rft.volume=39&rft.issue=1&rft.artnum=3&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-019-0981-7&rft_dat=%3Cproquest_cross%3E2315544798%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-591e3e978ec701e88b11459b82500b8901c5898766dd85372f1d3619f997cb8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2315544798&rft_id=info:pmid/&rfr_iscdi=true