Loading…
Taylor-Series Expansion Methods for Multivariate Hammerstein Integral Equations
A new Taylor-series method which was originally developed for the solution of one-dimensional integral equations is extended to solve multivariate nonlinear integral equations. In this paper, a new method is constructed to approximate the solutions of a class of multivariate Hammerstein equations. O...
Saved in:
Published in: | IAENG international journal of applied mathematics 2017-11, Vol.47 (4), p.1-5 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | 4 |
container_start_page | 1 |
container_title | IAENG international journal of applied mathematics |
container_volume | 47 |
creator | Neamprem, Khomsan Klangrak, Apinya Kaneko, Hideaki |
description | A new Taylor-series method which was originally developed for the solution of one-dimensional integral equations is extended to solve multivariate nonlinear integral equations. In this paper, a new method is constructed to approximate the solutions of a class of multivariate Hammerstein equations. One of the strength of the new method is that it lends itself to parallel computation. Hence it is a very highly efficient method. Another strength of the proposed method is that it also gives highly accurate approximations for all the derivatives of the solution up to the order of the Taylor-series approximation used in the method. Numerical examples are given to illustrate the efficiency and accuracy of the method. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2316996328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2104949340</sourcerecordid><originalsourceid>FETCH-LOGICAL-p568-a2fe7108a35de9fe6dfd5e73c0bedaf0792ed75890ca6465e69d650846b8b6db3</originalsourceid><addsrcrecordid>eNp9jU1LAzEURQdRsNT-h4DrgUy-s5RSbaGlC2df3jQvGplOpklG9N9bUFx2de_i3HNvqlljLautNer2v2tzXy1yDh0VQnNjJJtV-xa--5jqV0wBM1l9jTDkEAeyw_IeXSY-JrKb-hI-IQUoSNZwOmHKBcNANkPBtwQ9WZ0nKJdZfqjuPPQZF385r9rnVbtc19v9y2b5tK1HqUwNzKNuqAEuHVqPynknUfMj7dCBp9oydFoaS4-ghJKorFOSGqE60ynX8Xn1-KsdUzxPmMvhI05puDweGG-UtYozc5VqqLDCckH5D8dxWYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316996328</pqid></control><display><type>article</type><title>Taylor-Series Expansion Methods for Multivariate Hammerstein Integral Equations</title><source>Publicly Available Content Database</source><creator>Neamprem, Khomsan ; Klangrak, Apinya ; Kaneko, Hideaki</creator><creatorcontrib>Neamprem, Khomsan ; Klangrak, Apinya ; Kaneko, Hideaki</creatorcontrib><description>A new Taylor-series method which was originally developed for the solution of one-dimensional integral equations is extended to solve multivariate nonlinear integral equations. In this paper, a new method is constructed to approximate the solutions of a class of multivariate Hammerstein equations. One of the strength of the new method is that it lends itself to parallel computation. Hence it is a very highly efficient method. Another strength of the proposed method is that it also gives highly accurate approximations for all the derivatives of the solution up to the order of the Taylor-series approximation used in the method. Numerical examples are given to illustrate the efficiency and accuracy of the method.</description><identifier>ISSN: 1992-9978</identifier><identifier>EISSN: 1992-9986</identifier><language>eng</language><publisher>Hong Kong: International Association of Engineers</publisher><subject>Integral equations ; Monte Carlo simulation ; Multivariate analysis ; Nonlinear equations ; Parallel processing ; Series expansion</subject><ispartof>IAENG international journal of applied mathematics, 2017-11, Vol.47 (4), p.1-5</ispartof><rights>Copyright International Association of Engineers Nov 17, 2017</rights><rights>2017. This article is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the License). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2316996328/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2316996328?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Neamprem, Khomsan</creatorcontrib><creatorcontrib>Klangrak, Apinya</creatorcontrib><creatorcontrib>Kaneko, Hideaki</creatorcontrib><title>Taylor-Series Expansion Methods for Multivariate Hammerstein Integral Equations</title><title>IAENG international journal of applied mathematics</title><description>A new Taylor-series method which was originally developed for the solution of one-dimensional integral equations is extended to solve multivariate nonlinear integral equations. In this paper, a new method is constructed to approximate the solutions of a class of multivariate Hammerstein equations. One of the strength of the new method is that it lends itself to parallel computation. Hence it is a very highly efficient method. Another strength of the proposed method is that it also gives highly accurate approximations for all the derivatives of the solution up to the order of the Taylor-series approximation used in the method. Numerical examples are given to illustrate the efficiency and accuracy of the method.</description><subject>Integral equations</subject><subject>Monte Carlo simulation</subject><subject>Multivariate analysis</subject><subject>Nonlinear equations</subject><subject>Parallel processing</subject><subject>Series expansion</subject><issn>1992-9978</issn><issn>1992-9986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9jU1LAzEURQdRsNT-h4DrgUy-s5RSbaGlC2df3jQvGplOpklG9N9bUFx2de_i3HNvqlljLautNer2v2tzXy1yDh0VQnNjJJtV-xa--5jqV0wBM1l9jTDkEAeyw_IeXSY-JrKb-hI-IQUoSNZwOmHKBcNANkPBtwQ9WZ0nKJdZfqjuPPQZF385r9rnVbtc19v9y2b5tK1HqUwNzKNuqAEuHVqPynknUfMj7dCBp9oydFoaS4-ghJKorFOSGqE60ynX8Xn1-KsdUzxPmMvhI05puDweGG-UtYozc5VqqLDCckH5D8dxWYc</recordid><startdate>20171117</startdate><enddate>20171117</enddate><creator>Neamprem, Khomsan</creator><creator>Klangrak, Apinya</creator><creator>Kaneko, Hideaki</creator><general>International Association of Engineers</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20171117</creationdate><title>Taylor-Series Expansion Methods for Multivariate Hammerstein Integral Equations</title><author>Neamprem, Khomsan ; Klangrak, Apinya ; Kaneko, Hideaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p568-a2fe7108a35de9fe6dfd5e73c0bedaf0792ed75890ca6465e69d650846b8b6db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Integral equations</topic><topic>Monte Carlo simulation</topic><topic>Multivariate analysis</topic><topic>Nonlinear equations</topic><topic>Parallel processing</topic><topic>Series expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neamprem, Khomsan</creatorcontrib><creatorcontrib>Klangrak, Apinya</creatorcontrib><creatorcontrib>Kaneko, Hideaki</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>IAENG international journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neamprem, Khomsan</au><au>Klangrak, Apinya</au><au>Kaneko, Hideaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taylor-Series Expansion Methods for Multivariate Hammerstein Integral Equations</atitle><jtitle>IAENG international journal of applied mathematics</jtitle><date>2017-11-17</date><risdate>2017</risdate><volume>47</volume><issue>4</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1992-9978</issn><eissn>1992-9986</eissn><abstract>A new Taylor-series method which was originally developed for the solution of one-dimensional integral equations is extended to solve multivariate nonlinear integral equations. In this paper, a new method is constructed to approximate the solutions of a class of multivariate Hammerstein equations. One of the strength of the new method is that it lends itself to parallel computation. Hence it is a very highly efficient method. Another strength of the proposed method is that it also gives highly accurate approximations for all the derivatives of the solution up to the order of the Taylor-series approximation used in the method. Numerical examples are given to illustrate the efficiency and accuracy of the method.</abstract><cop>Hong Kong</cop><pub>International Association of Engineers</pub><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1992-9978 |
ispartof | IAENG international journal of applied mathematics, 2017-11, Vol.47 (4), p.1-5 |
issn | 1992-9978 1992-9986 |
language | eng |
recordid | cdi_proquest_journals_2316996328 |
source | Publicly Available Content Database |
subjects | Integral equations Monte Carlo simulation Multivariate analysis Nonlinear equations Parallel processing Series expansion |
title | Taylor-Series Expansion Methods for Multivariate Hammerstein Integral Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taylor-Series%20Expansion%20Methods%20for%20Multivariate%20Hammerstein%20Integral%20Equations&rft.jtitle=IAENG%20international%20journal%20of%20applied%20mathematics&rft.au=Neamprem,%20Khomsan&rft.date=2017-11-17&rft.volume=47&rft.issue=4&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1992-9978&rft.eissn=1992-9986&rft_id=info:doi/&rft_dat=%3Cproquest%3E2104949340%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p568-a2fe7108a35de9fe6dfd5e73c0bedaf0792ed75890ca6465e69d650846b8b6db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2316996328&rft_id=info:pmid/&rfr_iscdi=true |