Loading…
Robust Assessment of Real-World Adversarial Examples
We explore rigorous, systematic, and controlled experimental evaluation of adversarial examples in the real world and propose a testing regimen for evaluation of real world adversarial objects. We show that for small scene/ environmental perturbations, large adversarial performance differences exist...
Saved in:
Published in: | arXiv.org 2020-03 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We explore rigorous, systematic, and controlled experimental evaluation of adversarial examples in the real world and propose a testing regimen for evaluation of real world adversarial objects. We show that for small scene/ environmental perturbations, large adversarial performance differences exist. Current state of adversarial reporting exists largely as a frequency count over a dynamic collections of scenes. Our work underscores the need for either a more complete report or a score that incorporates scene changes and baseline performance for models and environments tested by adversarial developers. We put forth a score that attempts to address the above issues in a straight-forward exemplar application for multiple generated adversary examples. We contribute the following: 1. a testbed for adversarial assessment, 2. a score for adversarial examples, and 3. a collection of additional evaluations on testbed data. |
---|---|
ISSN: | 2331-8422 |