Loading…

CoverNet: Multimodal Behavior Prediction using Trajectory Sets

We present CoverNet, a new method for multimodal, probabilistic trajectory prediction for urban driving. Previous work has employed a variety of methods, including multimodal regression, occupancy maps, and 1-step stochastic policies. We instead frame the trajectory prediction problem as classificat...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-04
Main Authors: Phan-Minh, Tung, Elena Corina Grigore, Boulton, Freddy A, Beijbom, Oscar, Wolff, Eric M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Phan-Minh, Tung
Elena Corina Grigore
Boulton, Freddy A
Beijbom, Oscar
Wolff, Eric M
description We present CoverNet, a new method for multimodal, probabilistic trajectory prediction for urban driving. Previous work has employed a variety of methods, including multimodal regression, occupancy maps, and 1-step stochastic policies. We instead frame the trajectory prediction problem as classification over a diverse set of trajectories. The size of this set remains manageable due to the limited number of distinct actions that can be taken over a reasonable prediction horizon. We structure the trajectory set to a) ensure a desired level of coverage of the state space, and b) eliminate physically impossible trajectories. By dynamically generating trajectory sets based on the agent's current state, we can further improve our method's efficiency. We demonstrate our approach on public, real-world self-driving datasets, and show that it outperforms state-of-the-art methods.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2318372787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2318372787</sourcerecordid><originalsourceid>FETCH-proquest_journals_23183727873</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwScC_ViTXFwsCguimD3EtpTU2pPL0nBt9fBB3D6h-8fiQiUWiT5EmAiYufaNE1hpSHLVCQ2BQ3IJ_RreQydtw9qTCe3eDeDJZZnxsbW3lIvg7P9TZZsWqw98Vte0LuZGF9N5zD-dSrm-11ZHJIn0yug81VLgfsvVaAWudKgc63-uz7KIziI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2318372787</pqid></control><display><type>article</type><title>CoverNet: Multimodal Behavior Prediction using Trajectory Sets</title><source>Publicly Available Content Database</source><creator>Phan-Minh, Tung ; Elena Corina Grigore ; Boulton, Freddy A ; Beijbom, Oscar ; Wolff, Eric M</creator><creatorcontrib>Phan-Minh, Tung ; Elena Corina Grigore ; Boulton, Freddy A ; Beijbom, Oscar ; Wolff, Eric M</creatorcontrib><description>We present CoverNet, a new method for multimodal, probabilistic trajectory prediction for urban driving. Previous work has employed a variety of methods, including multimodal regression, occupancy maps, and 1-step stochastic policies. We instead frame the trajectory prediction problem as classification over a diverse set of trajectories. The size of this set remains manageable due to the limited number of distinct actions that can be taken over a reasonable prediction horizon. We structure the trajectory set to a) ensure a desired level of coverage of the state space, and b) eliminate physically impossible trajectories. By dynamically generating trajectory sets based on the agent's current state, we can further improve our method's efficiency. We demonstrate our approach on public, real-world self-driving datasets, and show that it outperforms state-of-the-art methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Occupancy ; Probabilistic methods ; Statistical analysis ; Trajectories</subject><ispartof>arXiv.org, 2020-04</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2318372787?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Phan-Minh, Tung</creatorcontrib><creatorcontrib>Elena Corina Grigore</creatorcontrib><creatorcontrib>Boulton, Freddy A</creatorcontrib><creatorcontrib>Beijbom, Oscar</creatorcontrib><creatorcontrib>Wolff, Eric M</creatorcontrib><title>CoverNet: Multimodal Behavior Prediction using Trajectory Sets</title><title>arXiv.org</title><description>We present CoverNet, a new method for multimodal, probabilistic trajectory prediction for urban driving. Previous work has employed a variety of methods, including multimodal regression, occupancy maps, and 1-step stochastic policies. We instead frame the trajectory prediction problem as classification over a diverse set of trajectories. The size of this set remains manageable due to the limited number of distinct actions that can be taken over a reasonable prediction horizon. We structure the trajectory set to a) ensure a desired level of coverage of the state space, and b) eliminate physically impossible trajectories. By dynamically generating trajectory sets based on the agent's current state, we can further improve our method's efficiency. We demonstrate our approach on public, real-world self-driving datasets, and show that it outperforms state-of-the-art methods.</description><subject>Occupancy</subject><subject>Probabilistic methods</subject><subject>Statistical analysis</subject><subject>Trajectories</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwScC_ViTXFwsCguimD3EtpTU2pPL0nBt9fBB3D6h-8fiQiUWiT5EmAiYufaNE1hpSHLVCQ2BQ3IJ_RreQydtw9qTCe3eDeDJZZnxsbW3lIvg7P9TZZsWqw98Vte0LuZGF9N5zD-dSrm-11ZHJIn0yug81VLgfsvVaAWudKgc63-uz7KIziI</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Phan-Minh, Tung</creator><creator>Elena Corina Grigore</creator><creator>Boulton, Freddy A</creator><creator>Beijbom, Oscar</creator><creator>Wolff, Eric M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200401</creationdate><title>CoverNet: Multimodal Behavior Prediction using Trajectory Sets</title><author>Phan-Minh, Tung ; Elena Corina Grigore ; Boulton, Freddy A ; Beijbom, Oscar ; Wolff, Eric M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23183727873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Occupancy</topic><topic>Probabilistic methods</topic><topic>Statistical analysis</topic><topic>Trajectories</topic><toplevel>online_resources</toplevel><creatorcontrib>Phan-Minh, Tung</creatorcontrib><creatorcontrib>Elena Corina Grigore</creatorcontrib><creatorcontrib>Boulton, Freddy A</creatorcontrib><creatorcontrib>Beijbom, Oscar</creatorcontrib><creatorcontrib>Wolff, Eric M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phan-Minh, Tung</au><au>Elena Corina Grigore</au><au>Boulton, Freddy A</au><au>Beijbom, Oscar</au><au>Wolff, Eric M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CoverNet: Multimodal Behavior Prediction using Trajectory Sets</atitle><jtitle>arXiv.org</jtitle><date>2020-04-01</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We present CoverNet, a new method for multimodal, probabilistic trajectory prediction for urban driving. Previous work has employed a variety of methods, including multimodal regression, occupancy maps, and 1-step stochastic policies. We instead frame the trajectory prediction problem as classification over a diverse set of trajectories. The size of this set remains manageable due to the limited number of distinct actions that can be taken over a reasonable prediction horizon. We structure the trajectory set to a) ensure a desired level of coverage of the state space, and b) eliminate physically impossible trajectories. By dynamically generating trajectory sets based on the agent's current state, we can further improve our method's efficiency. We demonstrate our approach on public, real-world self-driving datasets, and show that it outperforms state-of-the-art methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2318372787
source Publicly Available Content Database
subjects Occupancy
Probabilistic methods
Statistical analysis
Trajectories
title CoverNet: Multimodal Behavior Prediction using Trajectory Sets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CoverNet:%20Multimodal%20Behavior%20Prediction%20using%20Trajectory%20Sets&rft.jtitle=arXiv.org&rft.au=Phan-Minh,%20Tung&rft.date=2020-04-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2318372787%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23183727873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2318372787&rft_id=info:pmid/&rfr_iscdi=true