Loading…

On the determinants of Airbnb location and its spatial distribution

This article explores Airbnb accommodation spatial distribution and it estimates the main determinants of its location choice. It employs spatial bivariate correlations and spatial econometrics to understand the heterogeneous spatial relationship between established hotels and Airbnb for three kinds...

Full description

Saved in:
Bibliographic Details
Published in:Tourism economics : the business and finance of tourism and recreation 2019-12, Vol.25 (8), p.1224-1244
Main Authors: Eugenio-Martin, Juan L, Cazorla-Artiles, José M, González-Martel, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-e53b52ae7e5d5f102df79dcb911c2de89a6057ec65b4e8f96c6ab84c9cf4e32e3
cites cdi_FETCH-LOGICAL-c408t-e53b52ae7e5d5f102df79dcb911c2de89a6057ec65b4e8f96c6ab84c9cf4e32e3
container_end_page 1244
container_issue 8
container_start_page 1224
container_title Tourism economics : the business and finance of tourism and recreation
container_volume 25
creator Eugenio-Martin, Juan L
Cazorla-Artiles, José M
González-Martel, Christian
description This article explores Airbnb accommodation spatial distribution and it estimates the main determinants of its location choice. It employs spatial bivariate correlations and spatial econometrics to understand the heterogeneous spatial relationship between established hotels and Airbnb for three kinds of local tourism destinations: sun and beach, nature-based, and city. The case study concerns the Canary Islands where a good mixture of these attractions can be found. The main conclusion drawn is that Airbnb regulation needs to distinguish the kind of tourism. More precisely, Airbnb supply overlaps established hotels in city tourism, but it does not so clearly in sun and beach nor nature-based destinations. Airbnb supply matches tourist visits spatial distribution better than established hotels in city and nature-based destinations, but not in sun and beach destinations, where the incumbent hotels are closer to the tourism resources. Finally, the results from the spatial econometrics model shows that population size and the number of tourist visits matters as determinants of Airbnb location. However, the main determinant is price, which has got a much larger elasticity.
doi_str_mv 10.1177/1354816618825415
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2319174611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1354816618825415</sage_id><sourcerecordid>2319174611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e53b52ae7e5d5f102df79dcb911c2de89a6057ec65b4e8f96c6ab84c9cf4e32e3</originalsourceid><addsrcrecordid>eNp1kM1LAzEUxIMoWKt3jwHPq3nZfOweS1ErFHrR85JNXjSlzdYkPfjfu0sFQfD0GH4z82AIuQV2D6D1A9RSNKAUNA2XAuQZmXEmRMVqLc_JbMLVxC_JVc5bxriqVTsjy02k5QOpw4JpH6KJJdPB00VIfezpbrCmhCFSEx0NI8qHUZsddSGXFPrjBK_JhTe7jDc_d07enh5fl6tqvXl-WS7WlRWsKRXKupfcoEbppAfGndets30LYLnDpjWKSY1WyV5g41tllekbYVvrBdYc6zm5O_Ue0vB5xFy67XBMcXzZ8Rpa0EIBjC52ctk05JzQd4cU9iZ9dcC6aaru71RjpDpFsnnH39J__d-mc2iq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319174611</pqid></control><display><type>article</type><title>On the determinants of Airbnb location and its spatial distribution</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Sage Journals Online</source><creator>Eugenio-Martin, Juan L ; Cazorla-Artiles, José M ; González-Martel, Christian</creator><creatorcontrib>Eugenio-Martin, Juan L ; Cazorla-Artiles, José M ; González-Martel, Christian</creatorcontrib><description>This article explores Airbnb accommodation spatial distribution and it estimates the main determinants of its location choice. It employs spatial bivariate correlations and spatial econometrics to understand the heterogeneous spatial relationship between established hotels and Airbnb for three kinds of local tourism destinations: sun and beach, nature-based, and city. The case study concerns the Canary Islands where a good mixture of these attractions can be found. The main conclusion drawn is that Airbnb regulation needs to distinguish the kind of tourism. More precisely, Airbnb supply overlaps established hotels in city tourism, but it does not so clearly in sun and beach nor nature-based destinations. Airbnb supply matches tourist visits spatial distribution better than established hotels in city and nature-based destinations, but not in sun and beach destinations, where the incumbent hotels are closer to the tourism resources. Finally, the results from the spatial econometrics model shows that population size and the number of tourist visits matters as determinants of Airbnb location. However, the main determinant is price, which has got a much larger elasticity.</description><identifier>ISSN: 1354-8166</identifier><identifier>EISSN: 2044-0375</identifier><identifier>DOI: 10.1177/1354816618825415</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Beaches ; Bivariate analysis ; Cities ; Destinations ; Determinants ; Econometrics ; Elasticity ; Hotels ; Hotels &amp; motels ; Islands ; Population number ; Spatial analysis ; Spatial distribution ; Sun ; Tourism ; Tourist attractions</subject><ispartof>Tourism economics : the business and finance of tourism and recreation, 2019-12, Vol.25 (8), p.1224-1244</ispartof><rights>The Author(s) 2019</rights><rights>Copyright IP Publishing Ltd. Dec 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e53b52ae7e5d5f102df79dcb911c2de89a6057ec65b4e8f96c6ab84c9cf4e32e3</citedby><cites>FETCH-LOGICAL-c408t-e53b52ae7e5d5f102df79dcb911c2de89a6057ec65b4e8f96c6ab84c9cf4e32e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223,79364</link.rule.ids></links><search><creatorcontrib>Eugenio-Martin, Juan L</creatorcontrib><creatorcontrib>Cazorla-Artiles, José M</creatorcontrib><creatorcontrib>González-Martel, Christian</creatorcontrib><title>On the determinants of Airbnb location and its spatial distribution</title><title>Tourism economics : the business and finance of tourism and recreation</title><description>This article explores Airbnb accommodation spatial distribution and it estimates the main determinants of its location choice. It employs spatial bivariate correlations and spatial econometrics to understand the heterogeneous spatial relationship between established hotels and Airbnb for three kinds of local tourism destinations: sun and beach, nature-based, and city. The case study concerns the Canary Islands where a good mixture of these attractions can be found. The main conclusion drawn is that Airbnb regulation needs to distinguish the kind of tourism. More precisely, Airbnb supply overlaps established hotels in city tourism, but it does not so clearly in sun and beach nor nature-based destinations. Airbnb supply matches tourist visits spatial distribution better than established hotels in city and nature-based destinations, but not in sun and beach destinations, where the incumbent hotels are closer to the tourism resources. Finally, the results from the spatial econometrics model shows that population size and the number of tourist visits matters as determinants of Airbnb location. However, the main determinant is price, which has got a much larger elasticity.</description><subject>Beaches</subject><subject>Bivariate analysis</subject><subject>Cities</subject><subject>Destinations</subject><subject>Determinants</subject><subject>Econometrics</subject><subject>Elasticity</subject><subject>Hotels</subject><subject>Hotels &amp; motels</subject><subject>Islands</subject><subject>Population number</subject><subject>Spatial analysis</subject><subject>Spatial distribution</subject><subject>Sun</subject><subject>Tourism</subject><subject>Tourist attractions</subject><issn>1354-8166</issn><issn>2044-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp1kM1LAzEUxIMoWKt3jwHPq3nZfOweS1ErFHrR85JNXjSlzdYkPfjfu0sFQfD0GH4z82AIuQV2D6D1A9RSNKAUNA2XAuQZmXEmRMVqLc_JbMLVxC_JVc5bxriqVTsjy02k5QOpw4JpH6KJJdPB00VIfezpbrCmhCFSEx0NI8qHUZsddSGXFPrjBK_JhTe7jDc_d07enh5fl6tqvXl-WS7WlRWsKRXKupfcoEbppAfGndets30LYLnDpjWKSY1WyV5g41tllekbYVvrBdYc6zm5O_Ue0vB5xFy67XBMcXzZ8Rpa0EIBjC52ctk05JzQd4cU9iZ9dcC6aaru71RjpDpFsnnH39J__d-mc2iq</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Eugenio-Martin, Juan L</creator><creator>Cazorla-Artiles, José M</creator><creator>González-Martel, Christian</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope></search><sort><creationdate>20191201</creationdate><title>On the determinants of Airbnb location and its spatial distribution</title><author>Eugenio-Martin, Juan L ; Cazorla-Artiles, José M ; González-Martel, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e53b52ae7e5d5f102df79dcb911c2de89a6057ec65b4e8f96c6ab84c9cf4e32e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Beaches</topic><topic>Bivariate analysis</topic><topic>Cities</topic><topic>Destinations</topic><topic>Determinants</topic><topic>Econometrics</topic><topic>Elasticity</topic><topic>Hotels</topic><topic>Hotels &amp; motels</topic><topic>Islands</topic><topic>Population number</topic><topic>Spatial analysis</topic><topic>Spatial distribution</topic><topic>Sun</topic><topic>Tourism</topic><topic>Tourist attractions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eugenio-Martin, Juan L</creatorcontrib><creatorcontrib>Cazorla-Artiles, José M</creatorcontrib><creatorcontrib>González-Martel, Christian</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><jtitle>Tourism economics : the business and finance of tourism and recreation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eugenio-Martin, Juan L</au><au>Cazorla-Artiles, José M</au><au>González-Martel, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the determinants of Airbnb location and its spatial distribution</atitle><jtitle>Tourism economics : the business and finance of tourism and recreation</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>25</volume><issue>8</issue><spage>1224</spage><epage>1244</epage><pages>1224-1244</pages><issn>1354-8166</issn><eissn>2044-0375</eissn><abstract>This article explores Airbnb accommodation spatial distribution and it estimates the main determinants of its location choice. It employs spatial bivariate correlations and spatial econometrics to understand the heterogeneous spatial relationship between established hotels and Airbnb for three kinds of local tourism destinations: sun and beach, nature-based, and city. The case study concerns the Canary Islands where a good mixture of these attractions can be found. The main conclusion drawn is that Airbnb regulation needs to distinguish the kind of tourism. More precisely, Airbnb supply overlaps established hotels in city tourism, but it does not so clearly in sun and beach nor nature-based destinations. Airbnb supply matches tourist visits spatial distribution better than established hotels in city and nature-based destinations, but not in sun and beach destinations, where the incumbent hotels are closer to the tourism resources. Finally, the results from the spatial econometrics model shows that population size and the number of tourist visits matters as determinants of Airbnb location. However, the main determinant is price, which has got a much larger elasticity.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1354816618825415</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-8166
ispartof Tourism economics : the business and finance of tourism and recreation, 2019-12, Vol.25 (8), p.1224-1244
issn 1354-8166
2044-0375
language eng
recordid cdi_proquest_journals_2319174611
source International Bibliography of the Social Sciences (IBSS); Sage Journals Online
subjects Beaches
Bivariate analysis
Cities
Destinations
Determinants
Econometrics
Elasticity
Hotels
Hotels & motels
Islands
Population number
Spatial analysis
Spatial distribution
Sun
Tourism
Tourist attractions
title On the determinants of Airbnb location and its spatial distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20determinants%20of%20Airbnb%20location%20and%20its%20spatial%20distribution&rft.jtitle=Tourism%20economics%20:%20the%20business%20and%20finance%20of%20tourism%20and%20recreation&rft.au=Eugenio-Martin,%20Juan%20L&rft.date=2019-12-01&rft.volume=25&rft.issue=8&rft.spage=1224&rft.epage=1244&rft.pages=1224-1244&rft.issn=1354-8166&rft.eissn=2044-0375&rft_id=info:doi/10.1177/1354816618825415&rft_dat=%3Cproquest_cross%3E2319174611%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-e53b52ae7e5d5f102df79dcb911c2de89a6057ec65b4e8f96c6ab84c9cf4e32e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2319174611&rft_id=info:pmid/&rft_sage_id=10.1177_1354816618825415&rfr_iscdi=true