Loading…

Neutron activation analysis and data mining techniques to discriminate between beef cattle diets

Neutron activation analysis and data mining techniques were combined for assessing the mineral composition of diets commonly used to feed beef cattle in Brazil. Among twenty chemical elements determined, Br, Ca, Cs, La, Sc, Se, Sr, Th and Zn showed statistically significant differences between the t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of radioanalytical and nuclear chemistry 2019-12, Vol.322 (3), p.1571-1578
Main Authors: Tejeda Mazola, Yuniel, De Nadai Fernandes, Elisabete A., Sarriés, Gabriel A., Bacchi, Márcio A., Gonzaga, Cláudio L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-73d60a531614189b5de8b18b2657d92555b6769f6ab9fe12342b94c6e4e171df3
cites cdi_FETCH-LOGICAL-c358t-73d60a531614189b5de8b18b2657d92555b6769f6ab9fe12342b94c6e4e171df3
container_end_page 1578
container_issue 3
container_start_page 1571
container_title Journal of radioanalytical and nuclear chemistry
container_volume 322
creator Tejeda Mazola, Yuniel
De Nadai Fernandes, Elisabete A.
Sarriés, Gabriel A.
Bacchi, Márcio A.
Gonzaga, Cláudio L.
description Neutron activation analysis and data mining techniques were combined for assessing the mineral composition of diets commonly used to feed beef cattle in Brazil. Among twenty chemical elements determined, Br, Ca, Cs, La, Sc, Se, Sr, Th and Zn showed statistically significant differences between the two cattle diets studied. Chi square indicated that Cs, Se and Sc provided better diets discrimination. The highest classification performances using these elements were achieved for multilayer perceptron and sequential minimal optimization with prediction accuracy of 100%.
doi_str_mv 10.1007/s10967-019-06874-2
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2319259853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A606964208</galeid><sourcerecordid>A606964208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-73d60a531614189b5de8b18b2657d92555b6769f6ab9fe12342b94c6e4e171df3</originalsourceid><addsrcrecordid>eNp9UMtOAzEMjBBIlMIPcFqJ85Y8Nq9jVfGSKrjAOWSz3pKqzZYkBfH3pCwSN-SDLXtmbA9ClwTPCMbyOhGshawx0TUWSjY1PUITwpWqqVT4GE0wZaLmkpFTdJbSGmOslWIT9PoI-xyHUFmX_YfN_lAGu_lKPpWiqzqbbbX1wYdVlcG9Bf--h1Tloep8ctGXkc1QtZA_AULJ0FfO5ryBAoCcztFJbzcJLn7zFL3c3jwv7uvl093DYr6sHeMq15J1AlvOiCANUbrlHaiWqJYKLjtNOeetkEL3wra6B0JZQ1vdOAENEEm6nk3R1ai7i8PhwmzWwz6WT5KhjBQFrTgrqNmIWtkNGB_6IUfrSnSw9W4I0PvSnwsstGgoVoVAR4KLQ0oRerMrP9v4ZQg2B-vNaL0p1psf68u6KWIjKRVwWEH8u-Uf1jcIDobg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319259853</pqid></control><display><type>article</type><title>Neutron activation analysis and data mining techniques to discriminate between beef cattle diets</title><source>Springer Link</source><creator>Tejeda Mazola, Yuniel ; De Nadai Fernandes, Elisabete A. ; Sarriés, Gabriel A. ; Bacchi, Márcio A. ; Gonzaga, Cláudio L.</creator><creatorcontrib>Tejeda Mazola, Yuniel ; De Nadai Fernandes, Elisabete A. ; Sarriés, Gabriel A. ; Bacchi, Márcio A. ; Gonzaga, Cláudio L.</creatorcontrib><description>Neutron activation analysis and data mining techniques were combined for assessing the mineral composition of diets commonly used to feed beef cattle in Brazil. Among twenty chemical elements determined, Br, Ca, Cs, La, Sc, Se, Sr, Th and Zn showed statistically significant differences between the two cattle diets studied. Chi square indicated that Cs, Se and Sc provided better diets discrimination. The highest classification performances using these elements were achieved for multilayer perceptron and sequential minimal optimization with prediction accuracy of 100%.</description><identifier>ISSN: 0236-5731</identifier><identifier>EISSN: 1588-2780</identifier><identifier>DOI: 10.1007/s10967-019-06874-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Activation analysis ; Analysis ; Beef ; Beef cattle ; Beef industry ; Calcium ; Cattle ; Chemical elements ; Chemistry ; Chemistry and Materials Science ; Data analysis ; Data mining ; Diagnostic Radiology ; Diet ; Food and nutrition ; Hadrons ; Heavy Ions ; Inorganic Chemistry ; Methods ; Multilayer perceptrons ; Neutron activation analysis ; Neutrons ; Nuclear Chemistry ; Nuclear energy ; Nuclear Physics ; Optimization ; Organic chemistry ; Physical Chemistry ; Strontium</subject><ispartof>Journal of radioanalytical and nuclear chemistry, 2019-12, Vol.322 (3), p.1571-1578</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-73d60a531614189b5de8b18b2657d92555b6769f6ab9fe12342b94c6e4e171df3</citedby><cites>FETCH-LOGICAL-c358t-73d60a531614189b5de8b18b2657d92555b6769f6ab9fe12342b94c6e4e171df3</cites><orcidid>0000-0002-3414-5510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tejeda Mazola, Yuniel</creatorcontrib><creatorcontrib>De Nadai Fernandes, Elisabete A.</creatorcontrib><creatorcontrib>Sarriés, Gabriel A.</creatorcontrib><creatorcontrib>Bacchi, Márcio A.</creatorcontrib><creatorcontrib>Gonzaga, Cláudio L.</creatorcontrib><title>Neutron activation analysis and data mining techniques to discriminate between beef cattle diets</title><title>Journal of radioanalytical and nuclear chemistry</title><addtitle>J Radioanal Nucl Chem</addtitle><description>Neutron activation analysis and data mining techniques were combined for assessing the mineral composition of diets commonly used to feed beef cattle in Brazil. Among twenty chemical elements determined, Br, Ca, Cs, La, Sc, Se, Sr, Th and Zn showed statistically significant differences between the two cattle diets studied. Chi square indicated that Cs, Se and Sc provided better diets discrimination. The highest classification performances using these elements were achieved for multilayer perceptron and sequential minimal optimization with prediction accuracy of 100%.</description><subject>Activation analysis</subject><subject>Analysis</subject><subject>Beef</subject><subject>Beef cattle</subject><subject>Beef industry</subject><subject>Calcium</subject><subject>Cattle</subject><subject>Chemical elements</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Diagnostic Radiology</subject><subject>Diet</subject><subject>Food and nutrition</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Inorganic Chemistry</subject><subject>Methods</subject><subject>Multilayer perceptrons</subject><subject>Neutron activation analysis</subject><subject>Neutrons</subject><subject>Nuclear Chemistry</subject><subject>Nuclear energy</subject><subject>Nuclear Physics</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Physical Chemistry</subject><subject>Strontium</subject><issn>0236-5731</issn><issn>1588-2780</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOAzEMjBBIlMIPcFqJ85Y8Nq9jVfGSKrjAOWSz3pKqzZYkBfH3pCwSN-SDLXtmbA9ClwTPCMbyOhGshawx0TUWSjY1PUITwpWqqVT4GE0wZaLmkpFTdJbSGmOslWIT9PoI-xyHUFmX_YfN_lAGu_lKPpWiqzqbbbX1wYdVlcG9Bf--h1Tloep8ctGXkc1QtZA_AULJ0FfO5ryBAoCcztFJbzcJLn7zFL3c3jwv7uvl093DYr6sHeMq15J1AlvOiCANUbrlHaiWqJYKLjtNOeetkEL3wra6B0JZQ1vdOAENEEm6nk3R1ai7i8PhwmzWwz6WT5KhjBQFrTgrqNmIWtkNGB_6IUfrSnSw9W4I0PvSnwsstGgoVoVAR4KLQ0oRerMrP9v4ZQg2B-vNaL0p1psf68u6KWIjKRVwWEH8u-Uf1jcIDobg</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Tejeda Mazola, Yuniel</creator><creator>De Nadai Fernandes, Elisabete A.</creator><creator>Sarriés, Gabriel A.</creator><creator>Bacchi, Márcio A.</creator><creator>Gonzaga, Cláudio L.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3414-5510</orcidid></search><sort><creationdate>20191201</creationdate><title>Neutron activation analysis and data mining techniques to discriminate between beef cattle diets</title><author>Tejeda Mazola, Yuniel ; De Nadai Fernandes, Elisabete A. ; Sarriés, Gabriel A. ; Bacchi, Márcio A. ; Gonzaga, Cláudio L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-73d60a531614189b5de8b18b2657d92555b6769f6ab9fe12342b94c6e4e171df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation analysis</topic><topic>Analysis</topic><topic>Beef</topic><topic>Beef cattle</topic><topic>Beef industry</topic><topic>Calcium</topic><topic>Cattle</topic><topic>Chemical elements</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Diagnostic Radiology</topic><topic>Diet</topic><topic>Food and nutrition</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Inorganic Chemistry</topic><topic>Methods</topic><topic>Multilayer perceptrons</topic><topic>Neutron activation analysis</topic><topic>Neutrons</topic><topic>Nuclear Chemistry</topic><topic>Nuclear energy</topic><topic>Nuclear Physics</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Physical Chemistry</topic><topic>Strontium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tejeda Mazola, Yuniel</creatorcontrib><creatorcontrib>De Nadai Fernandes, Elisabete A.</creatorcontrib><creatorcontrib>Sarriés, Gabriel A.</creatorcontrib><creatorcontrib>Bacchi, Márcio A.</creatorcontrib><creatorcontrib>Gonzaga, Cláudio L.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of radioanalytical and nuclear chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tejeda Mazola, Yuniel</au><au>De Nadai Fernandes, Elisabete A.</au><au>Sarriés, Gabriel A.</au><au>Bacchi, Márcio A.</au><au>Gonzaga, Cláudio L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutron activation analysis and data mining techniques to discriminate between beef cattle diets</atitle><jtitle>Journal of radioanalytical and nuclear chemistry</jtitle><stitle>J Radioanal Nucl Chem</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>322</volume><issue>3</issue><spage>1571</spage><epage>1578</epage><pages>1571-1578</pages><issn>0236-5731</issn><eissn>1588-2780</eissn><abstract>Neutron activation analysis and data mining techniques were combined for assessing the mineral composition of diets commonly used to feed beef cattle in Brazil. Among twenty chemical elements determined, Br, Ca, Cs, La, Sc, Se, Sr, Th and Zn showed statistically significant differences between the two cattle diets studied. Chi square indicated that Cs, Se and Sc provided better diets discrimination. The highest classification performances using these elements were achieved for multilayer perceptron and sequential minimal optimization with prediction accuracy of 100%.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10967-019-06874-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3414-5510</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0236-5731
ispartof Journal of radioanalytical and nuclear chemistry, 2019-12, Vol.322 (3), p.1571-1578
issn 0236-5731
1588-2780
language eng
recordid cdi_proquest_journals_2319259853
source Springer Link
subjects Activation analysis
Analysis
Beef
Beef cattle
Beef industry
Calcium
Cattle
Chemical elements
Chemistry
Chemistry and Materials Science
Data analysis
Data mining
Diagnostic Radiology
Diet
Food and nutrition
Hadrons
Heavy Ions
Inorganic Chemistry
Methods
Multilayer perceptrons
Neutron activation analysis
Neutrons
Nuclear Chemistry
Nuclear energy
Nuclear Physics
Optimization
Organic chemistry
Physical Chemistry
Strontium
title Neutron activation analysis and data mining techniques to discriminate between beef cattle diets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutron%20activation%20analysis%20and%20data%20mining%20techniques%20to%20discriminate%20between%20beef%20cattle%20diets&rft.jtitle=Journal%20of%20radioanalytical%20and%20nuclear%20chemistry&rft.au=Tejeda%20Mazola,%20Yuniel&rft.date=2019-12-01&rft.volume=322&rft.issue=3&rft.spage=1571&rft.epage=1578&rft.pages=1571-1578&rft.issn=0236-5731&rft.eissn=1588-2780&rft_id=info:doi/10.1007/s10967-019-06874-2&rft_dat=%3Cgale_proqu%3EA606964208%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-73d60a531614189b5de8b18b2657d92555b6769f6ab9fe12342b94c6e4e171df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2319259853&rft_id=info:pmid/&rft_galeid=A606964208&rfr_iscdi=true