Loading…

Stabilizing the Metzler matrices with applications to dynamical systems

Real matrices with non-negative off-diagonal entries play a crucial role for modelling the positive linear dynamical systems. In the literature, these matrices are referred to as Metzler matrices or negated Z-matrices. Finding the closest stable Metzler matrix to an unstable one (and vice versa) is...

Full description

Saved in:
Bibliographic Details
Published in:Calcolo 2020-03, Vol.57 (1), Article 1
Main Author: Cvetković, Aleksandar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-f97ece4fc7eb32a9f2821fa53096994806285b02382757ec04c8d072fdbb208e3
cites cdi_FETCH-LOGICAL-c316t-f97ece4fc7eb32a9f2821fa53096994806285b02382757ec04c8d072fdbb208e3
container_end_page
container_issue 1
container_start_page
container_title Calcolo
container_volume 57
creator Cvetković, Aleksandar
description Real matrices with non-negative off-diagonal entries play a crucial role for modelling the positive linear dynamical systems. In the literature, these matrices are referred to as Metzler matrices or negated Z-matrices. Finding the closest stable Metzler matrix to an unstable one (and vice versa) is an important issue with many applications. The stability considered here is in the sense of Hurwitz, and the distance between matrices is measured in l ∞ , l 1 , and in the max norm. We provide either explicit solutions or efficient algorithms for obtaining the closest (un)stable matrix. The procedure for finding the closest stable Metzler matrix is based on the recently introduced selective greedy spectral method for optimizing the Perron eigenvalue. Originally intended for non-negative matrices, here is generalized to Metzler matrices. The efficiency of the new algorithms is demonstrated in examples and numerical experiments for the dimension of up to 2000. Applications to dynamical systems, linear switching systems, and sign-matrices are considered.
doi_str_mv 10.1007/s10092-019-0350-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2319260497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2319260497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f97ece4fc7eb32a9f2821fa53096994806285b02382757ec04c8d072fdbb208e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3TysbvJUYpWoeJBPYdsmm1T9sskRdpfb2QFT15mmOF93xkehK4p3FKA6i7mqhgBqgjwAgg_QTNKWUkKwcUpmgGAJFAycY4uYtzlsRBSzNDyLZnat_7o-w1OW4dfXDq2LuDOpOCti_jLpy0249h6a5If-ojTgNeH3nR50eJ4iMl18RKdNaaN7uq3z9HH48P74omsXpfPi_sVsZyWiTSqctaJxlau5syohklGG1NwUKVSQuYPZVED45JVRZaCsHINFWvWdc1AOj5HN1PuGIbPvYtJ74Z96PNJzThVrAShqqyik8qGIcbgGj0G35lw0BT0Dy898dKZl_7hpXn2sMkTs7bfuPCX_L_pG7a_bTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319260497</pqid></control><display><type>article</type><title>Stabilizing the Metzler matrices with applications to dynamical systems</title><source>Springer Link</source><creator>Cvetković, Aleksandar</creator><creatorcontrib>Cvetković, Aleksandar</creatorcontrib><description>Real matrices with non-negative off-diagonal entries play a crucial role for modelling the positive linear dynamical systems. In the literature, these matrices are referred to as Metzler matrices or negated Z-matrices. Finding the closest stable Metzler matrix to an unstable one (and vice versa) is an important issue with many applications. The stability considered here is in the sense of Hurwitz, and the distance between matrices is measured in l ∞ , l 1 , and in the max norm. We provide either explicit solutions or efficient algorithms for obtaining the closest (un)stable matrix. The procedure for finding the closest stable Metzler matrix is based on the recently introduced selective greedy spectral method for optimizing the Perron eigenvalue. Originally intended for non-negative matrices, here is generalized to Metzler matrices. The efficiency of the new algorithms is demonstrated in examples and numerical experiments for the dimension of up to 2000. Applications to dynamical systems, linear switching systems, and sign-matrices are considered.</description><identifier>ISSN: 0008-0624</identifier><identifier>EISSN: 1126-5434</identifier><identifier>DOI: 10.1007/s10092-019-0350-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Dynamical systems ; Eigenvalues ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Numerical Analysis ; Spectral methods ; Theory of Computation</subject><ispartof>Calcolo, 2020-03, Vol.57 (1), Article 1</ispartof><rights>Istituto di Informatica e Telematica (IIT) 2019</rights><rights>2019© Istituto di Informatica e Telematica (IIT) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f97ece4fc7eb32a9f2821fa53096994806285b02382757ec04c8d072fdbb208e3</citedby><cites>FETCH-LOGICAL-c316t-f97ece4fc7eb32a9f2821fa53096994806285b02382757ec04c8d072fdbb208e3</cites><orcidid>0000-0002-5876-202X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cvetković, Aleksandar</creatorcontrib><title>Stabilizing the Metzler matrices with applications to dynamical systems</title><title>Calcolo</title><addtitle>Calcolo</addtitle><description>Real matrices with non-negative off-diagonal entries play a crucial role for modelling the positive linear dynamical systems. In the literature, these matrices are referred to as Metzler matrices or negated Z-matrices. Finding the closest stable Metzler matrix to an unstable one (and vice versa) is an important issue with many applications. The stability considered here is in the sense of Hurwitz, and the distance between matrices is measured in l ∞ , l 1 , and in the max norm. We provide either explicit solutions or efficient algorithms for obtaining the closest (un)stable matrix. The procedure for finding the closest stable Metzler matrix is based on the recently introduced selective greedy spectral method for optimizing the Perron eigenvalue. Originally intended for non-negative matrices, here is generalized to Metzler matrices. The efficiency of the new algorithms is demonstrated in examples and numerical experiments for the dimension of up to 2000. Applications to dynamical systems, linear switching systems, and sign-matrices are considered.</description><subject>Algorithms</subject><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Numerical Analysis</subject><subject>Spectral methods</subject><subject>Theory of Computation</subject><issn>0008-0624</issn><issn>1126-5434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3TysbvJUYpWoeJBPYdsmm1T9sskRdpfb2QFT15mmOF93xkehK4p3FKA6i7mqhgBqgjwAgg_QTNKWUkKwcUpmgGAJFAycY4uYtzlsRBSzNDyLZnat_7o-w1OW4dfXDq2LuDOpOCti_jLpy0249h6a5If-ojTgNeH3nR50eJ4iMl18RKdNaaN7uq3z9HH48P74omsXpfPi_sVsZyWiTSqctaJxlau5syohklGG1NwUKVSQuYPZVED45JVRZaCsHINFWvWdc1AOj5HN1PuGIbPvYtJ74Z96PNJzThVrAShqqyik8qGIcbgGj0G35lw0BT0Dy898dKZl_7hpXn2sMkTs7bfuPCX_L_pG7a_bTs</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Cvetković, Aleksandar</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5876-202X</orcidid></search><sort><creationdate>20200301</creationdate><title>Stabilizing the Metzler matrices with applications to dynamical systems</title><author>Cvetković, Aleksandar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f97ece4fc7eb32a9f2821fa53096994806285b02382757ec04c8d072fdbb208e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Numerical Analysis</topic><topic>Spectral methods</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cvetković, Aleksandar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calcolo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cvetković, Aleksandar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing the Metzler matrices with applications to dynamical systems</atitle><jtitle>Calcolo</jtitle><stitle>Calcolo</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>57</volume><issue>1</issue><artnum>1</artnum><issn>0008-0624</issn><eissn>1126-5434</eissn><abstract>Real matrices with non-negative off-diagonal entries play a crucial role for modelling the positive linear dynamical systems. In the literature, these matrices are referred to as Metzler matrices or negated Z-matrices. Finding the closest stable Metzler matrix to an unstable one (and vice versa) is an important issue with many applications. The stability considered here is in the sense of Hurwitz, and the distance between matrices is measured in l ∞ , l 1 , and in the max norm. We provide either explicit solutions or efficient algorithms for obtaining the closest (un)stable matrix. The procedure for finding the closest stable Metzler matrix is based on the recently introduced selective greedy spectral method for optimizing the Perron eigenvalue. Originally intended for non-negative matrices, here is generalized to Metzler matrices. The efficiency of the new algorithms is demonstrated in examples and numerical experiments for the dimension of up to 2000. Applications to dynamical systems, linear switching systems, and sign-matrices are considered.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10092-019-0350-3</doi><orcidid>https://orcid.org/0000-0002-5876-202X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-0624
ispartof Calcolo, 2020-03, Vol.57 (1), Article 1
issn 0008-0624
1126-5434
language eng
recordid cdi_proquest_journals_2319260497
source Springer Link
subjects Algorithms
Dynamical systems
Eigenvalues
Mathematics
Mathematics and Statistics
Matrix methods
Numerical Analysis
Spectral methods
Theory of Computation
title Stabilizing the Metzler matrices with applications to dynamical systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20the%20Metzler%20matrices%20with%20applications%20to%20dynamical%20systems&rft.jtitle=Calcolo&rft.au=Cvetkovi%C4%87,%20Aleksandar&rft.date=2020-03-01&rft.volume=57&rft.issue=1&rft.artnum=1&rft.issn=0008-0624&rft.eissn=1126-5434&rft_id=info:doi/10.1007/s10092-019-0350-3&rft_dat=%3Cproquest_cross%3E2319260497%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-f97ece4fc7eb32a9f2821fa53096994806285b02382757ec04c8d072fdbb208e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2319260497&rft_id=info:pmid/&rfr_iscdi=true