Loading…
Stabilizing the Metzler matrices with applications to dynamical systems
Real matrices with non-negative off-diagonal entries play a crucial role for modelling the positive linear dynamical systems. In the literature, these matrices are referred to as Metzler matrices or negated Z-matrices. Finding the closest stable Metzler matrix to an unstable one (and vice versa) is...
Saved in:
Published in: | Calcolo 2020-03, Vol.57 (1), Article 1 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-f97ece4fc7eb32a9f2821fa53096994806285b02382757ec04c8d072fdbb208e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-f97ece4fc7eb32a9f2821fa53096994806285b02382757ec04c8d072fdbb208e3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Calcolo |
container_volume | 57 |
creator | Cvetković, Aleksandar |
description | Real matrices with non-negative off-diagonal entries play a crucial role for modelling the positive linear dynamical systems. In the literature, these matrices are referred to as Metzler matrices or negated Z-matrices. Finding the closest stable Metzler matrix to an unstable one (and vice versa) is an important issue with many applications. The stability considered here is in the sense of Hurwitz, and the distance between matrices is measured in
l
∞
,
l
1
, and in the max norm. We provide either explicit solutions or efficient algorithms for obtaining the closest (un)stable matrix. The procedure for finding the closest stable Metzler matrix is based on the recently introduced selective greedy spectral method for optimizing the Perron eigenvalue. Originally intended for non-negative matrices, here is generalized to Metzler matrices. The efficiency of the new algorithms is demonstrated in examples and numerical experiments for the dimension of up to 2000. Applications to dynamical systems, linear switching systems, and sign-matrices are considered. |
doi_str_mv | 10.1007/s10092-019-0350-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2319260497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2319260497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f97ece4fc7eb32a9f2821fa53096994806285b02382757ec04c8d072fdbb208e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3TysbvJUYpWoeJBPYdsmm1T9sskRdpfb2QFT15mmOF93xkehK4p3FKA6i7mqhgBqgjwAgg_QTNKWUkKwcUpmgGAJFAycY4uYtzlsRBSzNDyLZnat_7o-w1OW4dfXDq2LuDOpOCti_jLpy0249h6a5If-ojTgNeH3nR50eJ4iMl18RKdNaaN7uq3z9HH48P74omsXpfPi_sVsZyWiTSqctaJxlau5syohklGG1NwUKVSQuYPZVED45JVRZaCsHINFWvWdc1AOj5HN1PuGIbPvYtJ74Z96PNJzThVrAShqqyik8qGIcbgGj0G35lw0BT0Dy898dKZl_7hpXn2sMkTs7bfuPCX_L_pG7a_bTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319260497</pqid></control><display><type>article</type><title>Stabilizing the Metzler matrices with applications to dynamical systems</title><source>Springer Link</source><creator>Cvetković, Aleksandar</creator><creatorcontrib>Cvetković, Aleksandar</creatorcontrib><description>Real matrices with non-negative off-diagonal entries play a crucial role for modelling the positive linear dynamical systems. In the literature, these matrices are referred to as Metzler matrices or negated Z-matrices. Finding the closest stable Metzler matrix to an unstable one (and vice versa) is an important issue with many applications. The stability considered here is in the sense of Hurwitz, and the distance between matrices is measured in
l
∞
,
l
1
, and in the max norm. We provide either explicit solutions or efficient algorithms for obtaining the closest (un)stable matrix. The procedure for finding the closest stable Metzler matrix is based on the recently introduced selective greedy spectral method for optimizing the Perron eigenvalue. Originally intended for non-negative matrices, here is generalized to Metzler matrices. The efficiency of the new algorithms is demonstrated in examples and numerical experiments for the dimension of up to 2000. Applications to dynamical systems, linear switching systems, and sign-matrices are considered.</description><identifier>ISSN: 0008-0624</identifier><identifier>EISSN: 1126-5434</identifier><identifier>DOI: 10.1007/s10092-019-0350-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Dynamical systems ; Eigenvalues ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Numerical Analysis ; Spectral methods ; Theory of Computation</subject><ispartof>Calcolo, 2020-03, Vol.57 (1), Article 1</ispartof><rights>Istituto di Informatica e Telematica (IIT) 2019</rights><rights>2019© Istituto di Informatica e Telematica (IIT) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f97ece4fc7eb32a9f2821fa53096994806285b02382757ec04c8d072fdbb208e3</citedby><cites>FETCH-LOGICAL-c316t-f97ece4fc7eb32a9f2821fa53096994806285b02382757ec04c8d072fdbb208e3</cites><orcidid>0000-0002-5876-202X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cvetković, Aleksandar</creatorcontrib><title>Stabilizing the Metzler matrices with applications to dynamical systems</title><title>Calcolo</title><addtitle>Calcolo</addtitle><description>Real matrices with non-negative off-diagonal entries play a crucial role for modelling the positive linear dynamical systems. In the literature, these matrices are referred to as Metzler matrices or negated Z-matrices. Finding the closest stable Metzler matrix to an unstable one (and vice versa) is an important issue with many applications. The stability considered here is in the sense of Hurwitz, and the distance between matrices is measured in
l
∞
,
l
1
, and in the max norm. We provide either explicit solutions or efficient algorithms for obtaining the closest (un)stable matrix. The procedure for finding the closest stable Metzler matrix is based on the recently introduced selective greedy spectral method for optimizing the Perron eigenvalue. Originally intended for non-negative matrices, here is generalized to Metzler matrices. The efficiency of the new algorithms is demonstrated in examples and numerical experiments for the dimension of up to 2000. Applications to dynamical systems, linear switching systems, and sign-matrices are considered.</description><subject>Algorithms</subject><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Numerical Analysis</subject><subject>Spectral methods</subject><subject>Theory of Computation</subject><issn>0008-0624</issn><issn>1126-5434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3TysbvJUYpWoeJBPYdsmm1T9sskRdpfb2QFT15mmOF93xkehK4p3FKA6i7mqhgBqgjwAgg_QTNKWUkKwcUpmgGAJFAycY4uYtzlsRBSzNDyLZnat_7o-w1OW4dfXDq2LuDOpOCti_jLpy0249h6a5If-ojTgNeH3nR50eJ4iMl18RKdNaaN7uq3z9HH48P74omsXpfPi_sVsZyWiTSqctaJxlau5syohklGG1NwUKVSQuYPZVED45JVRZaCsHINFWvWdc1AOj5HN1PuGIbPvYtJ74Z96PNJzThVrAShqqyik8qGIcbgGj0G35lw0BT0Dy898dKZl_7hpXn2sMkTs7bfuPCX_L_pG7a_bTs</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Cvetković, Aleksandar</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5876-202X</orcidid></search><sort><creationdate>20200301</creationdate><title>Stabilizing the Metzler matrices with applications to dynamical systems</title><author>Cvetković, Aleksandar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f97ece4fc7eb32a9f2821fa53096994806285b02382757ec04c8d072fdbb208e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Numerical Analysis</topic><topic>Spectral methods</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cvetković, Aleksandar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calcolo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cvetković, Aleksandar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing the Metzler matrices with applications to dynamical systems</atitle><jtitle>Calcolo</jtitle><stitle>Calcolo</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>57</volume><issue>1</issue><artnum>1</artnum><issn>0008-0624</issn><eissn>1126-5434</eissn><abstract>Real matrices with non-negative off-diagonal entries play a crucial role for modelling the positive linear dynamical systems. In the literature, these matrices are referred to as Metzler matrices or negated Z-matrices. Finding the closest stable Metzler matrix to an unstable one (and vice versa) is an important issue with many applications. The stability considered here is in the sense of Hurwitz, and the distance between matrices is measured in
l
∞
,
l
1
, and in the max norm. We provide either explicit solutions or efficient algorithms for obtaining the closest (un)stable matrix. The procedure for finding the closest stable Metzler matrix is based on the recently introduced selective greedy spectral method for optimizing the Perron eigenvalue. Originally intended for non-negative matrices, here is generalized to Metzler matrices. The efficiency of the new algorithms is demonstrated in examples and numerical experiments for the dimension of up to 2000. Applications to dynamical systems, linear switching systems, and sign-matrices are considered.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10092-019-0350-3</doi><orcidid>https://orcid.org/0000-0002-5876-202X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-0624 |
ispartof | Calcolo, 2020-03, Vol.57 (1), Article 1 |
issn | 0008-0624 1126-5434 |
language | eng |
recordid | cdi_proquest_journals_2319260497 |
source | Springer Link |
subjects | Algorithms Dynamical systems Eigenvalues Mathematics Mathematics and Statistics Matrix methods Numerical Analysis Spectral methods Theory of Computation |
title | Stabilizing the Metzler matrices with applications to dynamical systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20the%20Metzler%20matrices%20with%20applications%20to%20dynamical%20systems&rft.jtitle=Calcolo&rft.au=Cvetkovi%C4%87,%20Aleksandar&rft.date=2020-03-01&rft.volume=57&rft.issue=1&rft.artnum=1&rft.issn=0008-0624&rft.eissn=1126-5434&rft_id=info:doi/10.1007/s10092-019-0350-3&rft_dat=%3Cproquest_cross%3E2319260497%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-f97ece4fc7eb32a9f2821fa53096994806285b02382757ec04c8d072fdbb208e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2319260497&rft_id=info:pmid/&rfr_iscdi=true |