Loading…
Linear model of water movements for large-scale inverted siphon in water distribution system
This paper proposes a linear model that relates the pressure head variations at the downstream end of an inverted siphon to the flow rate variations at two ends. It divides the pressure head variations in the inverted siphon into low-frequency part and high-frequency part. The two parts are caused b...
Saved in:
Published in: | Journal of hydroinformatics 2019-11, Vol.21 (6), p.1048-1063 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c307t-a6085fe925f0466d96838753f72be91ce94bf3a945928ce9a221b68bad0906d93 |
---|---|
cites | cdi_FETCH-LOGICAL-c307t-a6085fe925f0466d96838753f72be91ce94bf3a945928ce9a221b68bad0906d93 |
container_end_page | 1063 |
container_issue | 6 |
container_start_page | 1048 |
container_title | Journal of hydroinformatics |
container_volume | 21 |
creator | Zhonghao, Mao Guanghua, Guan Zhonghua, Yang Ke, Zhong |
description | This paper proposes a linear model that relates the pressure head variations at the downstream end of an inverted siphon to the flow rate variations at two ends. It divides the pressure head variations in the inverted siphon into low-frequency part and high-frequency part. The two parts are caused by the deformation of the siphon wall and the reflection of acoustic wave, respectively. In order to build a simplified relation between wall deformation and low-frequency pressure head variations, the Preissmann slot method (PSM) is adopted in this paper. The linear model can also be used in other forms of structures, such as pipes and tunnels, where a pressurized flow condition is present. In comparison with simulation results using the finite volume method, the linear model shows an L2 norm of 0.177 for a large-scale inverted siphon and 0.044 for a PVC pipe. To this end, the linear model is adopted to model a large-scale inverted siphon in a virtual water delivery system. Simulation results show that the inverted siphon can reduce water fluctuations. An equation to quantify this effect is proposed based on the linear model. |
doi_str_mv | 10.2166/hydro.2019.053 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2320921789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320921789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-a6085fe925f0466d96838753f72be91ce94bf3a945928ce9a221b68bad0906d93</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMouK5ePQc8t-araXOUxS8oeNGbENJ24mZpmzXJruy_t93d08wzvDMDD0L3lOSMSvm4PnTB54xQlZOCX6AFFbLIaMnF5bEXWUkFvUY3MW4IYZRXdIG-azeCCXjwHfTYW_xnEsy4hwHGFLH1Afcm_EAWW9MDduMeQoIOR7dd-3Hi80rnYgqu2SU3TeMhJhhu0ZU1fYS7c12ir5fnz9VbVn-8vq-e6qzlpEyZkaQqLChWWCKk7JSseFUW3JasAUVbUKKx3ChRKFZNZBijjawa0xFFpjhfoofT3W3wvzuISW_8LozTS804I4rRsppT-SnVBh9jAKu3wQ0mHDQlejaojwb1bFBPBvk_Cw9lrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320921789</pqid></control><display><type>article</type><title>Linear model of water movements for large-scale inverted siphon in water distribution system</title><source>Alma/SFX Local Collection</source><creator>Zhonghao, Mao ; Guanghua, Guan ; Zhonghua, Yang ; Ke, Zhong</creator><creatorcontrib>Zhonghao, Mao ; Guanghua, Guan ; Zhonghua, Yang ; Ke, Zhong</creatorcontrib><description>This paper proposes a linear model that relates the pressure head variations at the downstream end of an inverted siphon to the flow rate variations at two ends. It divides the pressure head variations in the inverted siphon into low-frequency part and high-frequency part. The two parts are caused by the deformation of the siphon wall and the reflection of acoustic wave, respectively. In order to build a simplified relation between wall deformation and low-frequency pressure head variations, the Preissmann slot method (PSM) is adopted in this paper. The linear model can also be used in other forms of structures, such as pipes and tunnels, where a pressurized flow condition is present. In comparison with simulation results using the finite volume method, the linear model shows an L2 norm of 0.177 for a large-scale inverted siphon and 0.044 for a PVC pipe. To this end, the linear model is adopted to model a large-scale inverted siphon in a virtual water delivery system. Simulation results show that the inverted siphon can reduce water fluctuations. An equation to quantify this effect is proposed based on the linear model.</description><identifier>ISSN: 1464-7141</identifier><identifier>EISSN: 1465-1734</identifier><identifier>DOI: 10.2166/hydro.2019.053</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Acoustic waves ; Acoustics ; Canals ; Civil engineering ; Computer simulation ; Control algorithms ; Controllers ; Deformation ; Deformation mechanisms ; Design ; Finite volume method ; Flow rates ; Flow velocity ; Hydraulics ; Irrigation ; Pressure ; Pressure distribution ; Pressure head ; Pressurized flow ; Simulation ; Steel pipes ; Tunnels ; Variation ; Water delivery ; Water distribution ; Water distribution systems ; Water engineering ; Water motion ; Wave reflection</subject><ispartof>Journal of hydroinformatics, 2019-11, Vol.21 (6), p.1048-1063</ispartof><rights>Copyright IWA Publishing Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-a6085fe925f0466d96838753f72be91ce94bf3a945928ce9a221b68bad0906d93</citedby><cites>FETCH-LOGICAL-c307t-a6085fe925f0466d96838753f72be91ce94bf3a945928ce9a221b68bad0906d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhonghao, Mao</creatorcontrib><creatorcontrib>Guanghua, Guan</creatorcontrib><creatorcontrib>Zhonghua, Yang</creatorcontrib><creatorcontrib>Ke, Zhong</creatorcontrib><title>Linear model of water movements for large-scale inverted siphon in water distribution system</title><title>Journal of hydroinformatics</title><description>This paper proposes a linear model that relates the pressure head variations at the downstream end of an inverted siphon to the flow rate variations at two ends. It divides the pressure head variations in the inverted siphon into low-frequency part and high-frequency part. The two parts are caused by the deformation of the siphon wall and the reflection of acoustic wave, respectively. In order to build a simplified relation between wall deformation and low-frequency pressure head variations, the Preissmann slot method (PSM) is adopted in this paper. The linear model can also be used in other forms of structures, such as pipes and tunnels, where a pressurized flow condition is present. In comparison with simulation results using the finite volume method, the linear model shows an L2 norm of 0.177 for a large-scale inverted siphon and 0.044 for a PVC pipe. To this end, the linear model is adopted to model a large-scale inverted siphon in a virtual water delivery system. Simulation results show that the inverted siphon can reduce water fluctuations. An equation to quantify this effect is proposed based on the linear model.</description><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Canals</subject><subject>Civil engineering</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Controllers</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Design</subject><subject>Finite volume method</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Hydraulics</subject><subject>Irrigation</subject><subject>Pressure</subject><subject>Pressure distribution</subject><subject>Pressure head</subject><subject>Pressurized flow</subject><subject>Simulation</subject><subject>Steel pipes</subject><subject>Tunnels</subject><subject>Variation</subject><subject>Water delivery</subject><subject>Water distribution</subject><subject>Water distribution systems</subject><subject>Water engineering</subject><subject>Water motion</subject><subject>Wave reflection</subject><issn>1464-7141</issn><issn>1465-1734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMouK5ePQc8t-araXOUxS8oeNGbENJ24mZpmzXJruy_t93d08wzvDMDD0L3lOSMSvm4PnTB54xQlZOCX6AFFbLIaMnF5bEXWUkFvUY3MW4IYZRXdIG-azeCCXjwHfTYW_xnEsy4hwHGFLH1Afcm_EAWW9MDduMeQoIOR7dd-3Hi80rnYgqu2SU3TeMhJhhu0ZU1fYS7c12ir5fnz9VbVn-8vq-e6qzlpEyZkaQqLChWWCKk7JSseFUW3JasAUVbUKKx3ChRKFZNZBijjawa0xFFpjhfoofT3W3wvzuISW_8LozTS804I4rRsppT-SnVBh9jAKu3wQ0mHDQlejaojwb1bFBPBvk_Cw9lrg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zhonghao, Mao</creator><creator>Guanghua, Guan</creator><creator>Zhonghua, Yang</creator><creator>Ke, Zhong</creator><general>IWA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20191101</creationdate><title>Linear model of water movements for large-scale inverted siphon in water distribution system</title><author>Zhonghao, Mao ; Guanghua, Guan ; Zhonghua, Yang ; Ke, Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-a6085fe925f0466d96838753f72be91ce94bf3a945928ce9a221b68bad0906d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Canals</topic><topic>Civil engineering</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Controllers</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Design</topic><topic>Finite volume method</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Hydraulics</topic><topic>Irrigation</topic><topic>Pressure</topic><topic>Pressure distribution</topic><topic>Pressure head</topic><topic>Pressurized flow</topic><topic>Simulation</topic><topic>Steel pipes</topic><topic>Tunnels</topic><topic>Variation</topic><topic>Water delivery</topic><topic>Water distribution</topic><topic>Water distribution systems</topic><topic>Water engineering</topic><topic>Water motion</topic><topic>Wave reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhonghao, Mao</creatorcontrib><creatorcontrib>Guanghua, Guan</creatorcontrib><creatorcontrib>Zhonghua, Yang</creatorcontrib><creatorcontrib>Ke, Zhong</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Journal of hydroinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhonghao, Mao</au><au>Guanghua, Guan</au><au>Zhonghua, Yang</au><au>Ke, Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear model of water movements for large-scale inverted siphon in water distribution system</atitle><jtitle>Journal of hydroinformatics</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>21</volume><issue>6</issue><spage>1048</spage><epage>1063</epage><pages>1048-1063</pages><issn>1464-7141</issn><eissn>1465-1734</eissn><abstract>This paper proposes a linear model that relates the pressure head variations at the downstream end of an inverted siphon to the flow rate variations at two ends. It divides the pressure head variations in the inverted siphon into low-frequency part and high-frequency part. The two parts are caused by the deformation of the siphon wall and the reflection of acoustic wave, respectively. In order to build a simplified relation between wall deformation and low-frequency pressure head variations, the Preissmann slot method (PSM) is adopted in this paper. The linear model can also be used in other forms of structures, such as pipes and tunnels, where a pressurized flow condition is present. In comparison with simulation results using the finite volume method, the linear model shows an L2 norm of 0.177 for a large-scale inverted siphon and 0.044 for a PVC pipe. To this end, the linear model is adopted to model a large-scale inverted siphon in a virtual water delivery system. Simulation results show that the inverted siphon can reduce water fluctuations. An equation to quantify this effect is proposed based on the linear model.</abstract><cop>London</cop><pub>IWA Publishing</pub><doi>10.2166/hydro.2019.053</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-7141 |
ispartof | Journal of hydroinformatics, 2019-11, Vol.21 (6), p.1048-1063 |
issn | 1464-7141 1465-1734 |
language | eng |
recordid | cdi_proquest_journals_2320921789 |
source | Alma/SFX Local Collection |
subjects | Acoustic waves Acoustics Canals Civil engineering Computer simulation Control algorithms Controllers Deformation Deformation mechanisms Design Finite volume method Flow rates Flow velocity Hydraulics Irrigation Pressure Pressure distribution Pressure head Pressurized flow Simulation Steel pipes Tunnels Variation Water delivery Water distribution Water distribution systems Water engineering Water motion Wave reflection |
title | Linear model of water movements for large-scale inverted siphon in water distribution system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20model%20of%20water%20movements%20for%20large-scale%20inverted%20siphon%20in%20water%20distribution%20system&rft.jtitle=Journal%20of%20hydroinformatics&rft.au=Zhonghao,%20Mao&rft.date=2019-11-01&rft.volume=21&rft.issue=6&rft.spage=1048&rft.epage=1063&rft.pages=1048-1063&rft.issn=1464-7141&rft.eissn=1465-1734&rft_id=info:doi/10.2166/hydro.2019.053&rft_dat=%3Cproquest_cross%3E2320921789%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-a6085fe925f0466d96838753f72be91ce94bf3a945928ce9a221b68bad0906d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2320921789&rft_id=info:pmid/&rfr_iscdi=true |