Loading…

Linear model of water movements for large-scale inverted siphon in water distribution system

This paper proposes a linear model that relates the pressure head variations at the downstream end of an inverted siphon to the flow rate variations at two ends. It divides the pressure head variations in the inverted siphon into low-frequency part and high-frequency part. The two parts are caused b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydroinformatics 2019-11, Vol.21 (6), p.1048-1063
Main Authors: Zhonghao, Mao, Guanghua, Guan, Zhonghua, Yang, Ke, Zhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c307t-a6085fe925f0466d96838753f72be91ce94bf3a945928ce9a221b68bad0906d93
cites cdi_FETCH-LOGICAL-c307t-a6085fe925f0466d96838753f72be91ce94bf3a945928ce9a221b68bad0906d93
container_end_page 1063
container_issue 6
container_start_page 1048
container_title Journal of hydroinformatics
container_volume 21
creator Zhonghao, Mao
Guanghua, Guan
Zhonghua, Yang
Ke, Zhong
description This paper proposes a linear model that relates the pressure head variations at the downstream end of an inverted siphon to the flow rate variations at two ends. It divides the pressure head variations in the inverted siphon into low-frequency part and high-frequency part. The two parts are caused by the deformation of the siphon wall and the reflection of acoustic wave, respectively. In order to build a simplified relation between wall deformation and low-frequency pressure head variations, the Preissmann slot method (PSM) is adopted in this paper. The linear model can also be used in other forms of structures, such as pipes and tunnels, where a pressurized flow condition is present. In comparison with simulation results using the finite volume method, the linear model shows an L2 norm of 0.177 for a large-scale inverted siphon and 0.044 for a PVC pipe. To this end, the linear model is adopted to model a large-scale inverted siphon in a virtual water delivery system. Simulation results show that the inverted siphon can reduce water fluctuations. An equation to quantify this effect is proposed based on the linear model.
doi_str_mv 10.2166/hydro.2019.053
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2320921789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320921789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-a6085fe925f0466d96838753f72be91ce94bf3a945928ce9a221b68bad0906d93</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMouK5ePQc8t-araXOUxS8oeNGbENJ24mZpmzXJruy_t93d08wzvDMDD0L3lOSMSvm4PnTB54xQlZOCX6AFFbLIaMnF5bEXWUkFvUY3MW4IYZRXdIG-azeCCXjwHfTYW_xnEsy4hwHGFLH1Afcm_EAWW9MDduMeQoIOR7dd-3Hi80rnYgqu2SU3TeMhJhhu0ZU1fYS7c12ir5fnz9VbVn-8vq-e6qzlpEyZkaQqLChWWCKk7JSseFUW3JasAUVbUKKx3ChRKFZNZBijjawa0xFFpjhfoofT3W3wvzuISW_8LozTS804I4rRsppT-SnVBh9jAKu3wQ0mHDQlejaojwb1bFBPBvk_Cw9lrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320921789</pqid></control><display><type>article</type><title>Linear model of water movements for large-scale inverted siphon in water distribution system</title><source>Alma/SFX Local Collection</source><creator>Zhonghao, Mao ; Guanghua, Guan ; Zhonghua, Yang ; Ke, Zhong</creator><creatorcontrib>Zhonghao, Mao ; Guanghua, Guan ; Zhonghua, Yang ; Ke, Zhong</creatorcontrib><description>This paper proposes a linear model that relates the pressure head variations at the downstream end of an inverted siphon to the flow rate variations at two ends. It divides the pressure head variations in the inverted siphon into low-frequency part and high-frequency part. The two parts are caused by the deformation of the siphon wall and the reflection of acoustic wave, respectively. In order to build a simplified relation between wall deformation and low-frequency pressure head variations, the Preissmann slot method (PSM) is adopted in this paper. The linear model can also be used in other forms of structures, such as pipes and tunnels, where a pressurized flow condition is present. In comparison with simulation results using the finite volume method, the linear model shows an L2 norm of 0.177 for a large-scale inverted siphon and 0.044 for a PVC pipe. To this end, the linear model is adopted to model a large-scale inverted siphon in a virtual water delivery system. Simulation results show that the inverted siphon can reduce water fluctuations. An equation to quantify this effect is proposed based on the linear model.</description><identifier>ISSN: 1464-7141</identifier><identifier>EISSN: 1465-1734</identifier><identifier>DOI: 10.2166/hydro.2019.053</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Acoustic waves ; Acoustics ; Canals ; Civil engineering ; Computer simulation ; Control algorithms ; Controllers ; Deformation ; Deformation mechanisms ; Design ; Finite volume method ; Flow rates ; Flow velocity ; Hydraulics ; Irrigation ; Pressure ; Pressure distribution ; Pressure head ; Pressurized flow ; Simulation ; Steel pipes ; Tunnels ; Variation ; Water delivery ; Water distribution ; Water distribution systems ; Water engineering ; Water motion ; Wave reflection</subject><ispartof>Journal of hydroinformatics, 2019-11, Vol.21 (6), p.1048-1063</ispartof><rights>Copyright IWA Publishing Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-a6085fe925f0466d96838753f72be91ce94bf3a945928ce9a221b68bad0906d93</citedby><cites>FETCH-LOGICAL-c307t-a6085fe925f0466d96838753f72be91ce94bf3a945928ce9a221b68bad0906d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhonghao, Mao</creatorcontrib><creatorcontrib>Guanghua, Guan</creatorcontrib><creatorcontrib>Zhonghua, Yang</creatorcontrib><creatorcontrib>Ke, Zhong</creatorcontrib><title>Linear model of water movements for large-scale inverted siphon in water distribution system</title><title>Journal of hydroinformatics</title><description>This paper proposes a linear model that relates the pressure head variations at the downstream end of an inverted siphon to the flow rate variations at two ends. It divides the pressure head variations in the inverted siphon into low-frequency part and high-frequency part. The two parts are caused by the deformation of the siphon wall and the reflection of acoustic wave, respectively. In order to build a simplified relation between wall deformation and low-frequency pressure head variations, the Preissmann slot method (PSM) is adopted in this paper. The linear model can also be used in other forms of structures, such as pipes and tunnels, where a pressurized flow condition is present. In comparison with simulation results using the finite volume method, the linear model shows an L2 norm of 0.177 for a large-scale inverted siphon and 0.044 for a PVC pipe. To this end, the linear model is adopted to model a large-scale inverted siphon in a virtual water delivery system. Simulation results show that the inverted siphon can reduce water fluctuations. An equation to quantify this effect is proposed based on the linear model.</description><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Canals</subject><subject>Civil engineering</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Controllers</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Design</subject><subject>Finite volume method</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Hydraulics</subject><subject>Irrigation</subject><subject>Pressure</subject><subject>Pressure distribution</subject><subject>Pressure head</subject><subject>Pressurized flow</subject><subject>Simulation</subject><subject>Steel pipes</subject><subject>Tunnels</subject><subject>Variation</subject><subject>Water delivery</subject><subject>Water distribution</subject><subject>Water distribution systems</subject><subject>Water engineering</subject><subject>Water motion</subject><subject>Wave reflection</subject><issn>1464-7141</issn><issn>1465-1734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMouK5ePQc8t-araXOUxS8oeNGbENJ24mZpmzXJruy_t93d08wzvDMDD0L3lOSMSvm4PnTB54xQlZOCX6AFFbLIaMnF5bEXWUkFvUY3MW4IYZRXdIG-azeCCXjwHfTYW_xnEsy4hwHGFLH1Afcm_EAWW9MDduMeQoIOR7dd-3Hi80rnYgqu2SU3TeMhJhhu0ZU1fYS7c12ir5fnz9VbVn-8vq-e6qzlpEyZkaQqLChWWCKk7JSseFUW3JasAUVbUKKx3ChRKFZNZBijjawa0xFFpjhfoofT3W3wvzuISW_8LozTS804I4rRsppT-SnVBh9jAKu3wQ0mHDQlejaojwb1bFBPBvk_Cw9lrg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zhonghao, Mao</creator><creator>Guanghua, Guan</creator><creator>Zhonghua, Yang</creator><creator>Ke, Zhong</creator><general>IWA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20191101</creationdate><title>Linear model of water movements for large-scale inverted siphon in water distribution system</title><author>Zhonghao, Mao ; Guanghua, Guan ; Zhonghua, Yang ; Ke, Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-a6085fe925f0466d96838753f72be91ce94bf3a945928ce9a221b68bad0906d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Canals</topic><topic>Civil engineering</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Controllers</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Design</topic><topic>Finite volume method</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Hydraulics</topic><topic>Irrigation</topic><topic>Pressure</topic><topic>Pressure distribution</topic><topic>Pressure head</topic><topic>Pressurized flow</topic><topic>Simulation</topic><topic>Steel pipes</topic><topic>Tunnels</topic><topic>Variation</topic><topic>Water delivery</topic><topic>Water distribution</topic><topic>Water distribution systems</topic><topic>Water engineering</topic><topic>Water motion</topic><topic>Wave reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhonghao, Mao</creatorcontrib><creatorcontrib>Guanghua, Guan</creatorcontrib><creatorcontrib>Zhonghua, Yang</creatorcontrib><creatorcontrib>Ke, Zhong</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Journal of hydroinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhonghao, Mao</au><au>Guanghua, Guan</au><au>Zhonghua, Yang</au><au>Ke, Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear model of water movements for large-scale inverted siphon in water distribution system</atitle><jtitle>Journal of hydroinformatics</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>21</volume><issue>6</issue><spage>1048</spage><epage>1063</epage><pages>1048-1063</pages><issn>1464-7141</issn><eissn>1465-1734</eissn><abstract>This paper proposes a linear model that relates the pressure head variations at the downstream end of an inverted siphon to the flow rate variations at two ends. It divides the pressure head variations in the inverted siphon into low-frequency part and high-frequency part. The two parts are caused by the deformation of the siphon wall and the reflection of acoustic wave, respectively. In order to build a simplified relation between wall deformation and low-frequency pressure head variations, the Preissmann slot method (PSM) is adopted in this paper. The linear model can also be used in other forms of structures, such as pipes and tunnels, where a pressurized flow condition is present. In comparison with simulation results using the finite volume method, the linear model shows an L2 norm of 0.177 for a large-scale inverted siphon and 0.044 for a PVC pipe. To this end, the linear model is adopted to model a large-scale inverted siphon in a virtual water delivery system. Simulation results show that the inverted siphon can reduce water fluctuations. An equation to quantify this effect is proposed based on the linear model.</abstract><cop>London</cop><pub>IWA Publishing</pub><doi>10.2166/hydro.2019.053</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1464-7141
ispartof Journal of hydroinformatics, 2019-11, Vol.21 (6), p.1048-1063
issn 1464-7141
1465-1734
language eng
recordid cdi_proquest_journals_2320921789
source Alma/SFX Local Collection
subjects Acoustic waves
Acoustics
Canals
Civil engineering
Computer simulation
Control algorithms
Controllers
Deformation
Deformation mechanisms
Design
Finite volume method
Flow rates
Flow velocity
Hydraulics
Irrigation
Pressure
Pressure distribution
Pressure head
Pressurized flow
Simulation
Steel pipes
Tunnels
Variation
Water delivery
Water distribution
Water distribution systems
Water engineering
Water motion
Wave reflection
title Linear model of water movements for large-scale inverted siphon in water distribution system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20model%20of%20water%20movements%20for%20large-scale%20inverted%20siphon%20in%20water%20distribution%20system&rft.jtitle=Journal%20of%20hydroinformatics&rft.au=Zhonghao,%20Mao&rft.date=2019-11-01&rft.volume=21&rft.issue=6&rft.spage=1048&rft.epage=1063&rft.pages=1048-1063&rft.issn=1464-7141&rft.eissn=1465-1734&rft_id=info:doi/10.2166/hydro.2019.053&rft_dat=%3Cproquest_cross%3E2320921789%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-a6085fe925f0466d96838753f72be91ce94bf3a945928ce9a221b68bad0906d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2320921789&rft_id=info:pmid/&rfr_iscdi=true