Loading…
Epistemic Uncertainty Quantification in Deep Learning Classification by the Delta Method
The Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models, but its direct application to deep neural networks is prevented by the large number of parameters \(P\). We propose a low cost variant of the Delta method applicable to \(L_2\)-regularized deep neu...
Saved in:
Published in: | arXiv.org 2021-02 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nilsen, Geir K Munthe-Kaas, Antonella Z Skaug, Hans J Brun, Morten |
description | The Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models, but its direct application to deep neural networks is prevented by the large number of parameters \(P\). We propose a low cost variant of the Delta method applicable to \(L_2\)-regularized deep neural networks based on the top \(K\) eigenpairs of the Fisher information matrix. We address efficient computation of full-rank approximate eigendecompositions in terms of either the exact inverse Hessian, the inverse outer-products of gradients approximation or the so-called Sandwich estimator. Moreover, we provide a bound on the approximation error for the uncertainty of the predictive class probabilities. We observe that when the smallest eigenvalue of the Fisher information matrix is near the \(L_2\)-regularization rate, the approximation error is close to zero even when \(K\ll P\). A demonstration of the methodology is presented using a TensorFlow implementation, and we show that meaningful rankings of images based on predictive uncertainty can be obtained for two LeNet-based neural networks using the MNIST and CIFAR-10 datasets. Further, we observe that false positives have on average a higher predictive epistemic uncertainty than true positives. This suggests that there is supplementing information in the uncertainty measure not captured by the classification alone. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2321042724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321042724</sourcerecordid><originalsourceid>FETCH-proquest_journals_23210427243</originalsourceid><addsrcrecordid>eNqNyjELgkAYgOEjCJLyPxw0C-d3mu1mNNQQFLTJZZ95Ynd29zn473MIWpve4XlnLAAp42ibACxY6H0rhIBNBmkqA3Yreu0JX7riV1OhI6UNjfw8KEO61pUibQ3Xhu8Qe35E5Yw2T553yvuf30dODU5PR4qfkBr7WLF5rTqP4bdLtt4Xl_wQ9c6-B_RUtnZwZqISJMQigQwS-d_1AbpWQeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321042724</pqid></control><display><type>article</type><title>Epistemic Uncertainty Quantification in Deep Learning Classification by the Delta Method</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Nilsen, Geir K ; Munthe-Kaas, Antonella Z ; Skaug, Hans J ; Brun, Morten</creator><creatorcontrib>Nilsen, Geir K ; Munthe-Kaas, Antonella Z ; Skaug, Hans J ; Brun, Morten</creatorcontrib><description>The Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models, but its direct application to deep neural networks is prevented by the large number of parameters \(P\). We propose a low cost variant of the Delta method applicable to \(L_2\)-regularized deep neural networks based on the top \(K\) eigenpairs of the Fisher information matrix. We address efficient computation of full-rank approximate eigendecompositions in terms of either the exact inverse Hessian, the inverse outer-products of gradients approximation or the so-called Sandwich estimator. Moreover, we provide a bound on the approximation error for the uncertainty of the predictive class probabilities. We observe that when the smallest eigenvalue of the Fisher information matrix is near the \(L_2\)-regularization rate, the approximation error is close to zero even when \(K\ll P\). A demonstration of the methodology is presented using a TensorFlow implementation, and we show that meaningful rankings of images based on predictive uncertainty can be obtained for two LeNet-based neural networks using the MNIST and CIFAR-10 datasets. Further, we observe that false positives have on average a higher predictive epistemic uncertainty than true positives. This suggests that there is supplementing information in the uncertainty measure not captured by the classification alone.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Artificial neural networks ; Deep learning ; Eigenvalues ; Hessian matrices ; Machine learning ; Neural networks ; Statistical analysis ; Statistical models ; Uncertainty</subject><ispartof>arXiv.org, 2021-02</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2321042724?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Nilsen, Geir K</creatorcontrib><creatorcontrib>Munthe-Kaas, Antonella Z</creatorcontrib><creatorcontrib>Skaug, Hans J</creatorcontrib><creatorcontrib>Brun, Morten</creatorcontrib><title>Epistemic Uncertainty Quantification in Deep Learning Classification by the Delta Method</title><title>arXiv.org</title><description>The Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models, but its direct application to deep neural networks is prevented by the large number of parameters \(P\). We propose a low cost variant of the Delta method applicable to \(L_2\)-regularized deep neural networks based on the top \(K\) eigenpairs of the Fisher information matrix. We address efficient computation of full-rank approximate eigendecompositions in terms of either the exact inverse Hessian, the inverse outer-products of gradients approximation or the so-called Sandwich estimator. Moreover, we provide a bound on the approximation error for the uncertainty of the predictive class probabilities. We observe that when the smallest eigenvalue of the Fisher information matrix is near the \(L_2\)-regularization rate, the approximation error is close to zero even when \(K\ll P\). A demonstration of the methodology is presented using a TensorFlow implementation, and we show that meaningful rankings of images based on predictive uncertainty can be obtained for two LeNet-based neural networks using the MNIST and CIFAR-10 datasets. Further, we observe that false positives have on average a higher predictive epistemic uncertainty than true positives. This suggests that there is supplementing information in the uncertainty measure not captured by the classification alone.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Eigenvalues</subject><subject>Hessian matrices</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyjELgkAYgOEjCJLyPxw0C-d3mu1mNNQQFLTJZZ95Ynd29zn473MIWpve4XlnLAAp42ibACxY6H0rhIBNBmkqA3Yreu0JX7riV1OhI6UNjfw8KEO61pUibQ3Xhu8Qe35E5Yw2T553yvuf30dODU5PR4qfkBr7WLF5rTqP4bdLtt4Xl_wQ9c6-B_RUtnZwZqISJMQigQwS-d_1AbpWQeM</recordid><startdate>20210228</startdate><enddate>20210228</enddate><creator>Nilsen, Geir K</creator><creator>Munthe-Kaas, Antonella Z</creator><creator>Skaug, Hans J</creator><creator>Brun, Morten</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210228</creationdate><title>Epistemic Uncertainty Quantification in Deep Learning Classification by the Delta Method</title><author>Nilsen, Geir K ; Munthe-Kaas, Antonella Z ; Skaug, Hans J ; Brun, Morten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23210427243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Eigenvalues</topic><topic>Hessian matrices</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Nilsen, Geir K</creatorcontrib><creatorcontrib>Munthe-Kaas, Antonella Z</creatorcontrib><creatorcontrib>Skaug, Hans J</creatorcontrib><creatorcontrib>Brun, Morten</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nilsen, Geir K</au><au>Munthe-Kaas, Antonella Z</au><au>Skaug, Hans J</au><au>Brun, Morten</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Epistemic Uncertainty Quantification in Deep Learning Classification by the Delta Method</atitle><jtitle>arXiv.org</jtitle><date>2021-02-28</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>The Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models, but its direct application to deep neural networks is prevented by the large number of parameters \(P\). We propose a low cost variant of the Delta method applicable to \(L_2\)-regularized deep neural networks based on the top \(K\) eigenpairs of the Fisher information matrix. We address efficient computation of full-rank approximate eigendecompositions in terms of either the exact inverse Hessian, the inverse outer-products of gradients approximation or the so-called Sandwich estimator. Moreover, we provide a bound on the approximation error for the uncertainty of the predictive class probabilities. We observe that when the smallest eigenvalue of the Fisher information matrix is near the \(L_2\)-regularization rate, the approximation error is close to zero even when \(K\ll P\). A demonstration of the methodology is presented using a TensorFlow implementation, and we show that meaningful rankings of images based on predictive uncertainty can be obtained for two LeNet-based neural networks using the MNIST and CIFAR-10 datasets. Further, we observe that false positives have on average a higher predictive epistemic uncertainty than true positives. This suggests that there is supplementing information in the uncertainty measure not captured by the classification alone.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2321042724 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Approximation Artificial neural networks Deep learning Eigenvalues Hessian matrices Machine learning Neural networks Statistical analysis Statistical models Uncertainty |
title | Epistemic Uncertainty Quantification in Deep Learning Classification by the Delta Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Epistemic%20Uncertainty%20Quantification%20in%20Deep%20Learning%20Classification%20by%20the%20Delta%20Method&rft.jtitle=arXiv.org&rft.au=Nilsen,%20Geir%20K&rft.date=2021-02-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2321042724%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23210427243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2321042724&rft_id=info:pmid/&rfr_iscdi=true |