Loading…

Epistemic Uncertainty Quantification in Deep Learning Classification by the Delta Method

The Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models, but its direct application to deep neural networks is prevented by the large number of parameters \(P\). We propose a low cost variant of the Delta method applicable to \(L_2\)-regularized deep neu...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-02
Main Authors: Nilsen, Geir K, Munthe-Kaas, Antonella Z, Skaug, Hans J, Brun, Morten
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Nilsen, Geir K
Munthe-Kaas, Antonella Z
Skaug, Hans J
Brun, Morten
description The Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models, but its direct application to deep neural networks is prevented by the large number of parameters \(P\). We propose a low cost variant of the Delta method applicable to \(L_2\)-regularized deep neural networks based on the top \(K\) eigenpairs of the Fisher information matrix. We address efficient computation of full-rank approximate eigendecompositions in terms of either the exact inverse Hessian, the inverse outer-products of gradients approximation or the so-called Sandwich estimator. Moreover, we provide a bound on the approximation error for the uncertainty of the predictive class probabilities. We observe that when the smallest eigenvalue of the Fisher information matrix is near the \(L_2\)-regularization rate, the approximation error is close to zero even when \(K\ll P\). A demonstration of the methodology is presented using a TensorFlow implementation, and we show that meaningful rankings of images based on predictive uncertainty can be obtained for two LeNet-based neural networks using the MNIST and CIFAR-10 datasets. Further, we observe that false positives have on average a higher predictive epistemic uncertainty than true positives. This suggests that there is supplementing information in the uncertainty measure not captured by the classification alone.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2321042724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321042724</sourcerecordid><originalsourceid>FETCH-proquest_journals_23210427243</originalsourceid><addsrcrecordid>eNqNyjELgkAYgOEjCJLyPxw0C-d3mu1mNNQQFLTJZZ95Ynd29zn473MIWpve4XlnLAAp42ibACxY6H0rhIBNBmkqA3Yreu0JX7riV1OhI6UNjfw8KEO61pUibQ3Xhu8Qe35E5Yw2T553yvuf30dODU5PR4qfkBr7WLF5rTqP4bdLtt4Xl_wQ9c6-B_RUtnZwZqISJMQigQwS-d_1AbpWQeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321042724</pqid></control><display><type>article</type><title>Epistemic Uncertainty Quantification in Deep Learning Classification by the Delta Method</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Nilsen, Geir K ; Munthe-Kaas, Antonella Z ; Skaug, Hans J ; Brun, Morten</creator><creatorcontrib>Nilsen, Geir K ; Munthe-Kaas, Antonella Z ; Skaug, Hans J ; Brun, Morten</creatorcontrib><description>The Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models, but its direct application to deep neural networks is prevented by the large number of parameters \(P\). We propose a low cost variant of the Delta method applicable to \(L_2\)-regularized deep neural networks based on the top \(K\) eigenpairs of the Fisher information matrix. We address efficient computation of full-rank approximate eigendecompositions in terms of either the exact inverse Hessian, the inverse outer-products of gradients approximation or the so-called Sandwich estimator. Moreover, we provide a bound on the approximation error for the uncertainty of the predictive class probabilities. We observe that when the smallest eigenvalue of the Fisher information matrix is near the \(L_2\)-regularization rate, the approximation error is close to zero even when \(K\ll P\). A demonstration of the methodology is presented using a TensorFlow implementation, and we show that meaningful rankings of images based on predictive uncertainty can be obtained for two LeNet-based neural networks using the MNIST and CIFAR-10 datasets. Further, we observe that false positives have on average a higher predictive epistemic uncertainty than true positives. This suggests that there is supplementing information in the uncertainty measure not captured by the classification alone.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Artificial neural networks ; Deep learning ; Eigenvalues ; Hessian matrices ; Machine learning ; Neural networks ; Statistical analysis ; Statistical models ; Uncertainty</subject><ispartof>arXiv.org, 2021-02</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2321042724?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Nilsen, Geir K</creatorcontrib><creatorcontrib>Munthe-Kaas, Antonella Z</creatorcontrib><creatorcontrib>Skaug, Hans J</creatorcontrib><creatorcontrib>Brun, Morten</creatorcontrib><title>Epistemic Uncertainty Quantification in Deep Learning Classification by the Delta Method</title><title>arXiv.org</title><description>The Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models, but its direct application to deep neural networks is prevented by the large number of parameters \(P\). We propose a low cost variant of the Delta method applicable to \(L_2\)-regularized deep neural networks based on the top \(K\) eigenpairs of the Fisher information matrix. We address efficient computation of full-rank approximate eigendecompositions in terms of either the exact inverse Hessian, the inverse outer-products of gradients approximation or the so-called Sandwich estimator. Moreover, we provide a bound on the approximation error for the uncertainty of the predictive class probabilities. We observe that when the smallest eigenvalue of the Fisher information matrix is near the \(L_2\)-regularization rate, the approximation error is close to zero even when \(K\ll P\). A demonstration of the methodology is presented using a TensorFlow implementation, and we show that meaningful rankings of images based on predictive uncertainty can be obtained for two LeNet-based neural networks using the MNIST and CIFAR-10 datasets. Further, we observe that false positives have on average a higher predictive epistemic uncertainty than true positives. This suggests that there is supplementing information in the uncertainty measure not captured by the classification alone.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Eigenvalues</subject><subject>Hessian matrices</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyjELgkAYgOEjCJLyPxw0C-d3mu1mNNQQFLTJZZ95Ynd29zn473MIWpve4XlnLAAp42ibACxY6H0rhIBNBmkqA3Yreu0JX7riV1OhI6UNjfw8KEO61pUibQ3Xhu8Qe35E5Yw2T553yvuf30dODU5PR4qfkBr7WLF5rTqP4bdLtt4Xl_wQ9c6-B_RUtnZwZqISJMQigQwS-d_1AbpWQeM</recordid><startdate>20210228</startdate><enddate>20210228</enddate><creator>Nilsen, Geir K</creator><creator>Munthe-Kaas, Antonella Z</creator><creator>Skaug, Hans J</creator><creator>Brun, Morten</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210228</creationdate><title>Epistemic Uncertainty Quantification in Deep Learning Classification by the Delta Method</title><author>Nilsen, Geir K ; Munthe-Kaas, Antonella Z ; Skaug, Hans J ; Brun, Morten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23210427243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Eigenvalues</topic><topic>Hessian matrices</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Nilsen, Geir K</creatorcontrib><creatorcontrib>Munthe-Kaas, Antonella Z</creatorcontrib><creatorcontrib>Skaug, Hans J</creatorcontrib><creatorcontrib>Brun, Morten</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nilsen, Geir K</au><au>Munthe-Kaas, Antonella Z</au><au>Skaug, Hans J</au><au>Brun, Morten</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Epistemic Uncertainty Quantification in Deep Learning Classification by the Delta Method</atitle><jtitle>arXiv.org</jtitle><date>2021-02-28</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>The Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models, but its direct application to deep neural networks is prevented by the large number of parameters \(P\). We propose a low cost variant of the Delta method applicable to \(L_2\)-regularized deep neural networks based on the top \(K\) eigenpairs of the Fisher information matrix. We address efficient computation of full-rank approximate eigendecompositions in terms of either the exact inverse Hessian, the inverse outer-products of gradients approximation or the so-called Sandwich estimator. Moreover, we provide a bound on the approximation error for the uncertainty of the predictive class probabilities. We observe that when the smallest eigenvalue of the Fisher information matrix is near the \(L_2\)-regularization rate, the approximation error is close to zero even when \(K\ll P\). A demonstration of the methodology is presented using a TensorFlow implementation, and we show that meaningful rankings of images based on predictive uncertainty can be obtained for two LeNet-based neural networks using the MNIST and CIFAR-10 datasets. Further, we observe that false positives have on average a higher predictive epistemic uncertainty than true positives. This suggests that there is supplementing information in the uncertainty measure not captured by the classification alone.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2321042724
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Approximation
Artificial neural networks
Deep learning
Eigenvalues
Hessian matrices
Machine learning
Neural networks
Statistical analysis
Statistical models
Uncertainty
title Epistemic Uncertainty Quantification in Deep Learning Classification by the Delta Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Epistemic%20Uncertainty%20Quantification%20in%20Deep%20Learning%20Classification%20by%20the%20Delta%20Method&rft.jtitle=arXiv.org&rft.au=Nilsen,%20Geir%20K&rft.date=2021-02-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2321042724%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23210427243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2321042724&rft_id=info:pmid/&rfr_iscdi=true