Loading…

Exploring the temporal variability of a food web using long‐term biomonitoring data

Ecological communities are constantly being reshaped in the face of environmental change and anthropogenic pressures. Yet, how food webs change over time remains poorly understood. Food web science is characterized by a trade‐off between complexity (in terms of the number of species and feeding link...

Full description

Saved in:
Bibliographic Details
Published in:Ecography (Copenhagen) 2019-12, Vol.42 (12), p.2107-2121
Main Authors: Olivier, Pierre, Frelat, Romain, Bonsdorff, Erik, Kortsch, Susanne, Kröncke, Ingrid, Möllmann, Christian, Neumann, Hermann, Sell, Anne F., Nordström, Marie C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3379-ac058f07e926b6aef18fcbea7d297ad8c391e42b6c6dd1b8693b64311e8735d03
cites cdi_FETCH-LOGICAL-c3379-ac058f07e926b6aef18fcbea7d297ad8c391e42b6c6dd1b8693b64311e8735d03
container_end_page 2121
container_issue 12
container_start_page 2107
container_title Ecography (Copenhagen)
container_volume 42
creator Olivier, Pierre
Frelat, Romain
Bonsdorff, Erik
Kortsch, Susanne
Kröncke, Ingrid
Möllmann, Christian
Neumann, Hermann
Sell, Anne F.
Nordström, Marie C.
description Ecological communities are constantly being reshaped in the face of environmental change and anthropogenic pressures. Yet, how food webs change over time remains poorly understood. Food web science is characterized by a trade‐off between complexity (in terms of the number of species and feeding links) and dynamics. Topological analysis can use complex, highly resolved empirical food web models to explore the architecture of feeding interactions but is limited to a static view, whereas ecosystem models can be dynamic but use highly aggregated food webs. Here, we explore the temporal dynamics of a highly resolved empirical food web over a time period of 18 years, using the German Bight fish and benthic epifauna community as our case study. We relied on long‐term monitoring ecosystem surveys (from 1998 to 2015) to build a metaweb, i.e. the meta food web containing all species recorded over the time span of our study. We then combined time series of species abundances with topological network analysis to construct annual food web snapshots. We developed a new approach, ‘node‐weighted’ food web metrics by including species abundances to represent the temporal dynamics of food web structure, focusing on generality and vulnerability. Our results suggest that structural food web properties change through time; however, binary food web structural properties may not be as temporally variable as the underlying changes in species composition. Further, the node‐weighted metrics enabled us to detect that food web structure was influenced by changes in species composition during the first half of the time series and more strongly by changes in species dominance during the second half. Our results demonstrate how ecosystem surveys can be used to monitor temporal changes in food web structure, which are important ecosystem indicators for building marine management and conservation plans.
doi_str_mv 10.1111/ecog.04461
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321214819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321214819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3379-ac058f07e926b6aef18fcbea7d297ad8c391e42b6c6dd1b8693b64311e8735d03</originalsourceid><addsrcrecordid>eNp90L9OwzAQBnALgUQpLDyBJTakFJ-d-s-IqlKQKnWhs2UnTnGVxMFJKd14hD4jT0JKmLnllp--O30I3QKZQD8PLgubCUlTDmdoBJyQhEylOEcjoghPxFSRS3TVtltCgCouR2g9_2zKEH29wd2bw52rmhBNiT9M9Mb60ncHHApscBFCjvfO4l17wmWoN99fx87FClsfqlD7bojJTWeu0UVhytbd_O0xWj_NX2fPyXK1eJk9LpOMMaESk_XfFUQ4RbnlxhUgi8w6I3KqhMllxhS4lFqe8TwHK7lilqcMwEnBpjlhY3Q35DYxvO9c2-lt2MW6P6kpo0AhlaB6dT-oLIa2ja7QTfSViQcNRJ9q06fa9G9tPYYB733pDv9IPZ-tFkBTqdgPWQ5xMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321214819</pqid></control><display><type>article</type><title>Exploring the temporal variability of a food web using long‐term biomonitoring data</title><source>Publicly Available Content Database</source><creator>Olivier, Pierre ; Frelat, Romain ; Bonsdorff, Erik ; Kortsch, Susanne ; Kröncke, Ingrid ; Möllmann, Christian ; Neumann, Hermann ; Sell, Anne F. ; Nordström, Marie C.</creator><creatorcontrib>Olivier, Pierre ; Frelat, Romain ; Bonsdorff, Erik ; Kortsch, Susanne ; Kröncke, Ingrid ; Möllmann, Christian ; Neumann, Hermann ; Sell, Anne F. ; Nordström, Marie C.</creatorcontrib><description>Ecological communities are constantly being reshaped in the face of environmental change and anthropogenic pressures. Yet, how food webs change over time remains poorly understood. Food web science is characterized by a trade‐off between complexity (in terms of the number of species and feeding links) and dynamics. Topological analysis can use complex, highly resolved empirical food web models to explore the architecture of feeding interactions but is limited to a static view, whereas ecosystem models can be dynamic but use highly aggregated food webs. Here, we explore the temporal dynamics of a highly resolved empirical food web over a time period of 18 years, using the German Bight fish and benthic epifauna community as our case study. We relied on long‐term monitoring ecosystem surveys (from 1998 to 2015) to build a metaweb, i.e. the meta food web containing all species recorded over the time span of our study. We then combined time series of species abundances with topological network analysis to construct annual food web snapshots. We developed a new approach, ‘node‐weighted’ food web metrics by including species abundances to represent the temporal dynamics of food web structure, focusing on generality and vulnerability. Our results suggest that structural food web properties change through time; however, binary food web structural properties may not be as temporally variable as the underlying changes in species composition. Further, the node‐weighted metrics enabled us to detect that food web structure was influenced by changes in species composition during the first half of the time series and more strongly by changes in species dominance during the second half. Our results demonstrate how ecosystem surveys can be used to monitor temporal changes in food web structure, which are important ecosystem indicators for building marine management and conservation plans.</description><identifier>ISSN: 0906-7590</identifier><identifier>EISSN: 1600-0587</identifier><identifier>DOI: 10.1111/ecog.04461</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Abundance ; Anthropogenic factors ; Biomonitoring ; Complexity ; Composition ; Dynamic structural analysis ; Ecological monitoring ; Ecosystem management ; Ecosystem models ; Ecosystems ; Empirical analysis ; Environment models ; Environmental changes ; Epifauna ; Feeding ; Food chains ; food web structure ; Food webs ; Human influences ; Marine ecosystems ; Network analysis ; Polls &amp; surveys ; Species composition ; temporal variability ; Time series ; Topology</subject><ispartof>Ecography (Copenhagen), 2019-12, Vol.42 (12), p.2107-2121</ispartof><rights>2019 The Authors. Ecography published by John Wiley &amp; Sons on behalf of Nordic Society Oikos</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3379-ac058f07e926b6aef18fcbea7d297ad8c391e42b6c6dd1b8693b64311e8735d03</citedby><cites>FETCH-LOGICAL-c3379-ac058f07e926b6aef18fcbea7d297ad8c391e42b6c6dd1b8693b64311e8735d03</cites><orcidid>0000-0001-5070-4880 ; 0000-0002-3755-3966 ; 0000-0002-6495-4781 ; 0000-0001-5763-1813 ; 0000-0002-8631-4398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2321214819/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2321214819?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Olivier, Pierre</creatorcontrib><creatorcontrib>Frelat, Romain</creatorcontrib><creatorcontrib>Bonsdorff, Erik</creatorcontrib><creatorcontrib>Kortsch, Susanne</creatorcontrib><creatorcontrib>Kröncke, Ingrid</creatorcontrib><creatorcontrib>Möllmann, Christian</creatorcontrib><creatorcontrib>Neumann, Hermann</creatorcontrib><creatorcontrib>Sell, Anne F.</creatorcontrib><creatorcontrib>Nordström, Marie C.</creatorcontrib><title>Exploring the temporal variability of a food web using long‐term biomonitoring data</title><title>Ecography (Copenhagen)</title><description>Ecological communities are constantly being reshaped in the face of environmental change and anthropogenic pressures. Yet, how food webs change over time remains poorly understood. Food web science is characterized by a trade‐off between complexity (in terms of the number of species and feeding links) and dynamics. Topological analysis can use complex, highly resolved empirical food web models to explore the architecture of feeding interactions but is limited to a static view, whereas ecosystem models can be dynamic but use highly aggregated food webs. Here, we explore the temporal dynamics of a highly resolved empirical food web over a time period of 18 years, using the German Bight fish and benthic epifauna community as our case study. We relied on long‐term monitoring ecosystem surveys (from 1998 to 2015) to build a metaweb, i.e. the meta food web containing all species recorded over the time span of our study. We then combined time series of species abundances with topological network analysis to construct annual food web snapshots. We developed a new approach, ‘node‐weighted’ food web metrics by including species abundances to represent the temporal dynamics of food web structure, focusing on generality and vulnerability. Our results suggest that structural food web properties change through time; however, binary food web structural properties may not be as temporally variable as the underlying changes in species composition. Further, the node‐weighted metrics enabled us to detect that food web structure was influenced by changes in species composition during the first half of the time series and more strongly by changes in species dominance during the second half. Our results demonstrate how ecosystem surveys can be used to monitor temporal changes in food web structure, which are important ecosystem indicators for building marine management and conservation plans.</description><subject>Abundance</subject><subject>Anthropogenic factors</subject><subject>Biomonitoring</subject><subject>Complexity</subject><subject>Composition</subject><subject>Dynamic structural analysis</subject><subject>Ecological monitoring</subject><subject>Ecosystem management</subject><subject>Ecosystem models</subject><subject>Ecosystems</subject><subject>Empirical analysis</subject><subject>Environment models</subject><subject>Environmental changes</subject><subject>Epifauna</subject><subject>Feeding</subject><subject>Food chains</subject><subject>food web structure</subject><subject>Food webs</subject><subject>Human influences</subject><subject>Marine ecosystems</subject><subject>Network analysis</subject><subject>Polls &amp; surveys</subject><subject>Species composition</subject><subject>temporal variability</subject><subject>Time series</subject><subject>Topology</subject><issn>0906-7590</issn><issn>1600-0587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp90L9OwzAQBnALgUQpLDyBJTakFJ-d-s-IqlKQKnWhs2UnTnGVxMFJKd14hD4jT0JKmLnllp--O30I3QKZQD8PLgubCUlTDmdoBJyQhEylOEcjoghPxFSRS3TVtltCgCouR2g9_2zKEH29wd2bw52rmhBNiT9M9Mb60ncHHApscBFCjvfO4l17wmWoN99fx87FClsfqlD7bojJTWeu0UVhytbd_O0xWj_NX2fPyXK1eJk9LpOMMaESk_XfFUQ4RbnlxhUgi8w6I3KqhMllxhS4lFqe8TwHK7lilqcMwEnBpjlhY3Q35DYxvO9c2-lt2MW6P6kpo0AhlaB6dT-oLIa2ja7QTfSViQcNRJ9q06fa9G9tPYYB733pDv9IPZ-tFkBTqdgPWQ5xMg</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Olivier, Pierre</creator><creator>Frelat, Romain</creator><creator>Bonsdorff, Erik</creator><creator>Kortsch, Susanne</creator><creator>Kröncke, Ingrid</creator><creator>Möllmann, Christian</creator><creator>Neumann, Hermann</creator><creator>Sell, Anne F.</creator><creator>Nordström, Marie C.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0001-5070-4880</orcidid><orcidid>https://orcid.org/0000-0002-3755-3966</orcidid><orcidid>https://orcid.org/0000-0002-6495-4781</orcidid><orcidid>https://orcid.org/0000-0001-5763-1813</orcidid><orcidid>https://orcid.org/0000-0002-8631-4398</orcidid></search><sort><creationdate>201912</creationdate><title>Exploring the temporal variability of a food web using long‐term biomonitoring data</title><author>Olivier, Pierre ; Frelat, Romain ; Bonsdorff, Erik ; Kortsch, Susanne ; Kröncke, Ingrid ; Möllmann, Christian ; Neumann, Hermann ; Sell, Anne F. ; Nordström, Marie C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3379-ac058f07e926b6aef18fcbea7d297ad8c391e42b6c6dd1b8693b64311e8735d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abundance</topic><topic>Anthropogenic factors</topic><topic>Biomonitoring</topic><topic>Complexity</topic><topic>Composition</topic><topic>Dynamic structural analysis</topic><topic>Ecological monitoring</topic><topic>Ecosystem management</topic><topic>Ecosystem models</topic><topic>Ecosystems</topic><topic>Empirical analysis</topic><topic>Environment models</topic><topic>Environmental changes</topic><topic>Epifauna</topic><topic>Feeding</topic><topic>Food chains</topic><topic>food web structure</topic><topic>Food webs</topic><topic>Human influences</topic><topic>Marine ecosystems</topic><topic>Network analysis</topic><topic>Polls &amp; surveys</topic><topic>Species composition</topic><topic>temporal variability</topic><topic>Time series</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olivier, Pierre</creatorcontrib><creatorcontrib>Frelat, Romain</creatorcontrib><creatorcontrib>Bonsdorff, Erik</creatorcontrib><creatorcontrib>Kortsch, Susanne</creatorcontrib><creatorcontrib>Kröncke, Ingrid</creatorcontrib><creatorcontrib>Möllmann, Christian</creatorcontrib><creatorcontrib>Neumann, Hermann</creatorcontrib><creatorcontrib>Sell, Anne F.</creatorcontrib><creatorcontrib>Nordström, Marie C.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>Ecography (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olivier, Pierre</au><au>Frelat, Romain</au><au>Bonsdorff, Erik</au><au>Kortsch, Susanne</au><au>Kröncke, Ingrid</au><au>Möllmann, Christian</au><au>Neumann, Hermann</au><au>Sell, Anne F.</au><au>Nordström, Marie C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the temporal variability of a food web using long‐term biomonitoring data</atitle><jtitle>Ecography (Copenhagen)</jtitle><date>2019-12</date><risdate>2019</risdate><volume>42</volume><issue>12</issue><spage>2107</spage><epage>2121</epage><pages>2107-2121</pages><issn>0906-7590</issn><eissn>1600-0587</eissn><abstract>Ecological communities are constantly being reshaped in the face of environmental change and anthropogenic pressures. Yet, how food webs change over time remains poorly understood. Food web science is characterized by a trade‐off between complexity (in terms of the number of species and feeding links) and dynamics. Topological analysis can use complex, highly resolved empirical food web models to explore the architecture of feeding interactions but is limited to a static view, whereas ecosystem models can be dynamic but use highly aggregated food webs. Here, we explore the temporal dynamics of a highly resolved empirical food web over a time period of 18 years, using the German Bight fish and benthic epifauna community as our case study. We relied on long‐term monitoring ecosystem surveys (from 1998 to 2015) to build a metaweb, i.e. the meta food web containing all species recorded over the time span of our study. We then combined time series of species abundances with topological network analysis to construct annual food web snapshots. We developed a new approach, ‘node‐weighted’ food web metrics by including species abundances to represent the temporal dynamics of food web structure, focusing on generality and vulnerability. Our results suggest that structural food web properties change through time; however, binary food web structural properties may not be as temporally variable as the underlying changes in species composition. Further, the node‐weighted metrics enabled us to detect that food web structure was influenced by changes in species composition during the first half of the time series and more strongly by changes in species dominance during the second half. Our results demonstrate how ecosystem surveys can be used to monitor temporal changes in food web structure, which are important ecosystem indicators for building marine management and conservation plans.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ecog.04461</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5070-4880</orcidid><orcidid>https://orcid.org/0000-0002-3755-3966</orcidid><orcidid>https://orcid.org/0000-0002-6495-4781</orcidid><orcidid>https://orcid.org/0000-0001-5763-1813</orcidid><orcidid>https://orcid.org/0000-0002-8631-4398</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0906-7590
ispartof Ecography (Copenhagen), 2019-12, Vol.42 (12), p.2107-2121
issn 0906-7590
1600-0587
language eng
recordid cdi_proquest_journals_2321214819
source Publicly Available Content Database
subjects Abundance
Anthropogenic factors
Biomonitoring
Complexity
Composition
Dynamic structural analysis
Ecological monitoring
Ecosystem management
Ecosystem models
Ecosystems
Empirical analysis
Environment models
Environmental changes
Epifauna
Feeding
Food chains
food web structure
Food webs
Human influences
Marine ecosystems
Network analysis
Polls & surveys
Species composition
temporal variability
Time series
Topology
title Exploring the temporal variability of a food web using long‐term biomonitoring data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20temporal%20variability%20of%20a%20food%20web%20using%20long%E2%80%90term%20biomonitoring%20data&rft.jtitle=Ecography%20(Copenhagen)&rft.au=Olivier,%20Pierre&rft.date=2019-12&rft.volume=42&rft.issue=12&rft.spage=2107&rft.epage=2121&rft.pages=2107-2121&rft.issn=0906-7590&rft.eissn=1600-0587&rft_id=info:doi/10.1111/ecog.04461&rft_dat=%3Cproquest_cross%3E2321214819%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3379-ac058f07e926b6aef18fcbea7d297ad8c391e42b6c6dd1b8693b64311e8735d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2321214819&rft_id=info:pmid/&rfr_iscdi=true