Loading…

Stability of Timoshenko systems with thermal coupling on the bending moment

The Timoshenko system is a distinguished coupled pair of differential equations arising in mathematical elasticity. In the case of constant coefficients, if a damping is added in only one of its equations, it is well‐known that exponential stability holds if and only if the wave speeds of both equat...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Nachrichten 2019-12, Vol.292 (12), p.2537-2555
Main Authors: Cardozo, C. L., Jorge Silva, M. A., Ma, T. F., Muñoz Rivera, J. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3176-b1eaede8996d417b6c2c53a1934d692ead1fd16486f7828d147aaabc16658913
cites cdi_FETCH-LOGICAL-c3176-b1eaede8996d417b6c2c53a1934d692ead1fd16486f7828d147aaabc16658913
container_end_page 2555
container_issue 12
container_start_page 2537
container_title Mathematische Nachrichten
container_volume 292
creator Cardozo, C. L.
Jorge Silva, M. A.
Ma, T. F.
Muñoz Rivera, J. E.
description The Timoshenko system is a distinguished coupled pair of differential equations arising in mathematical elasticity. In the case of constant coefficients, if a damping is added in only one of its equations, it is well‐known that exponential stability holds if and only if the wave speeds of both equations are equal. In the present paper we study both non‐homogeneous and homogeneous thermoelastic problems where the model's coefficients are non‐constant and constants, respectively. Our main stability results are proved by means of a unified approach that combines local estimates of the resolvent equation in the semigroup framework with a recent control‐observability analysis for static systems. Therefore, our results complement all those on the linear case provided in [22], by extending the methodology employed in [4] to the case of Timoshenko systems with thermal coupling on the bending moment.
doi_str_mv 10.1002/mana.201800546
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321336988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321336988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-b1eaede8996d417b6c2c53a1934d692ead1fd16486f7828d147aaabc16658913</originalsourceid><addsrcrecordid>eNqFkDFPwzAQRi0EEqWwMltiTvE5iWOPVQUUUWCgA5vlxA51ie0Sp6ry70lUBCPT6Tu97056CF0DmQEh9NYpr2aUACckz9gJmkBOaUIZsFM0GYA8yXn2fo4uYtwSQoQo2AQ9vXWqtI3tehxqvLYuxI3xnwHHPnbGRXyw3QZ3G9M61eAq7HeN9R84-HGHS-P1GF1wxneX6KxWTTRXP3OK1vd368UyWb0-PC7mq6RKoWBJCUYZbbgQTGdQlKyiVZ4qEGmmmaBGaag1sIyzuuCUa8gKpVRZAWM5F5BO0c3x7K4NX3sTO7kN-9YPHyVNKaQpE5wP1OxIVW2IsTW13LXWqbaXQOToS46-5K-voSCOhYNtTP8PLZ_nL_O_7jdAU29p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321336988</pqid></control><display><type>article</type><title>Stability of Timoshenko systems with thermal coupling on the bending moment</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cardozo, C. L. ; Jorge Silva, M. A. ; Ma, T. F. ; Muñoz Rivera, J. E.</creator><creatorcontrib>Cardozo, C. L. ; Jorge Silva, M. A. ; Ma, T. F. ; Muñoz Rivera, J. E.</creatorcontrib><description>The Timoshenko system is a distinguished coupled pair of differential equations arising in mathematical elasticity. In the case of constant coefficients, if a damping is added in only one of its equations, it is well‐known that exponential stability holds if and only if the wave speeds of both equations are equal. In the present paper we study both non‐homogeneous and homogeneous thermoelastic problems where the model's coefficients are non‐constant and constants, respectively. Our main stability results are proved by means of a unified approach that combines local estimates of the resolvent equation in the semigroup framework with a recent control‐observability analysis for static systems. Therefore, our results complement all those on the linear case provided in [22], by extending the methodology employed in [4] to the case of Timoshenko systems with thermal coupling on the bending moment.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201800546</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>35B35 ; 35B40 ; 35M33 ; 74D05 ; 74K10 ; Bending moments ; Damping ; Differential equations ; Elasticity ; exponential stability ; polynomial decay ; Stability ; Thermal coupling ; thermoelasticity ; Timoshenko system</subject><ispartof>Mathematische Nachrichten, 2019-12, Vol.292 (12), p.2537-2555</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-b1eaede8996d417b6c2c53a1934d692ead1fd16486f7828d147aaabc16658913</citedby><cites>FETCH-LOGICAL-c3176-b1eaede8996d417b6c2c53a1934d692ead1fd16486f7828d147aaabc16658913</cites><orcidid>0000-0002-4806-886X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cardozo, C. L.</creatorcontrib><creatorcontrib>Jorge Silva, M. A.</creatorcontrib><creatorcontrib>Ma, T. F.</creatorcontrib><creatorcontrib>Muñoz Rivera, J. E.</creatorcontrib><title>Stability of Timoshenko systems with thermal coupling on the bending moment</title><title>Mathematische Nachrichten</title><description>The Timoshenko system is a distinguished coupled pair of differential equations arising in mathematical elasticity. In the case of constant coefficients, if a damping is added in only one of its equations, it is well‐known that exponential stability holds if and only if the wave speeds of both equations are equal. In the present paper we study both non‐homogeneous and homogeneous thermoelastic problems where the model's coefficients are non‐constant and constants, respectively. Our main stability results are proved by means of a unified approach that combines local estimates of the resolvent equation in the semigroup framework with a recent control‐observability analysis for static systems. Therefore, our results complement all those on the linear case provided in [22], by extending the methodology employed in [4] to the case of Timoshenko systems with thermal coupling on the bending moment.</description><subject>35B35</subject><subject>35B40</subject><subject>35M33</subject><subject>74D05</subject><subject>74K10</subject><subject>Bending moments</subject><subject>Damping</subject><subject>Differential equations</subject><subject>Elasticity</subject><subject>exponential stability</subject><subject>polynomial decay</subject><subject>Stability</subject><subject>Thermal coupling</subject><subject>thermoelasticity</subject><subject>Timoshenko system</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQRi0EEqWwMltiTvE5iWOPVQUUUWCgA5vlxA51ie0Sp6ry70lUBCPT6Tu97056CF0DmQEh9NYpr2aUACckz9gJmkBOaUIZsFM0GYA8yXn2fo4uYtwSQoQo2AQ9vXWqtI3tehxqvLYuxI3xnwHHPnbGRXyw3QZ3G9M61eAq7HeN9R84-HGHS-P1GF1wxneX6KxWTTRXP3OK1vd368UyWb0-PC7mq6RKoWBJCUYZbbgQTGdQlKyiVZ4qEGmmmaBGaag1sIyzuuCUa8gKpVRZAWM5F5BO0c3x7K4NX3sTO7kN-9YPHyVNKaQpE5wP1OxIVW2IsTW13LXWqbaXQOToS46-5K-voSCOhYNtTP8PLZ_nL_O_7jdAU29p</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Cardozo, C. L.</creator><creator>Jorge Silva, M. A.</creator><creator>Ma, T. F.</creator><creator>Muñoz Rivera, J. E.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4806-886X</orcidid></search><sort><creationdate>201912</creationdate><title>Stability of Timoshenko systems with thermal coupling on the bending moment</title><author>Cardozo, C. L. ; Jorge Silva, M. A. ; Ma, T. F. ; Muñoz Rivera, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-b1eaede8996d417b6c2c53a1934d692ead1fd16486f7828d147aaabc16658913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>35B35</topic><topic>35B40</topic><topic>35M33</topic><topic>74D05</topic><topic>74K10</topic><topic>Bending moments</topic><topic>Damping</topic><topic>Differential equations</topic><topic>Elasticity</topic><topic>exponential stability</topic><topic>polynomial decay</topic><topic>Stability</topic><topic>Thermal coupling</topic><topic>thermoelasticity</topic><topic>Timoshenko system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardozo, C. L.</creatorcontrib><creatorcontrib>Jorge Silva, M. A.</creatorcontrib><creatorcontrib>Ma, T. F.</creatorcontrib><creatorcontrib>Muñoz Rivera, J. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardozo, C. L.</au><au>Jorge Silva, M. A.</au><au>Ma, T. F.</au><au>Muñoz Rivera, J. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Timoshenko systems with thermal coupling on the bending moment</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2019-12</date><risdate>2019</risdate><volume>292</volume><issue>12</issue><spage>2537</spage><epage>2555</epage><pages>2537-2555</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>The Timoshenko system is a distinguished coupled pair of differential equations arising in mathematical elasticity. In the case of constant coefficients, if a damping is added in only one of its equations, it is well‐known that exponential stability holds if and only if the wave speeds of both equations are equal. In the present paper we study both non‐homogeneous and homogeneous thermoelastic problems where the model's coefficients are non‐constant and constants, respectively. Our main stability results are proved by means of a unified approach that combines local estimates of the resolvent equation in the semigroup framework with a recent control‐observability analysis for static systems. Therefore, our results complement all those on the linear case provided in [22], by extending the methodology employed in [4] to the case of Timoshenko systems with thermal coupling on the bending moment.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.201800546</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4806-886X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2019-12, Vol.292 (12), p.2537-2555
issn 0025-584X
1522-2616
language eng
recordid cdi_proquest_journals_2321336988
source Wiley-Blackwell Read & Publish Collection
subjects 35B35
35B40
35M33
74D05
74K10
Bending moments
Damping
Differential equations
Elasticity
exponential stability
polynomial decay
Stability
Thermal coupling
thermoelasticity
Timoshenko system
title Stability of Timoshenko systems with thermal coupling on the bending moment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Timoshenko%20systems%20with%20thermal%20coupling%20on%20the%20bending%20moment&rft.jtitle=Mathematische%20Nachrichten&rft.au=Cardozo,%20C.%20L.&rft.date=2019-12&rft.volume=292&rft.issue=12&rft.spage=2537&rft.epage=2555&rft.pages=2537-2555&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201800546&rft_dat=%3Cproquest_cross%3E2321336988%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3176-b1eaede8996d417b6c2c53a1934d692ead1fd16486f7828d147aaabc16658913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2321336988&rft_id=info:pmid/&rfr_iscdi=true