Loading…
Stability of Timoshenko systems with thermal coupling on the bending moment
The Timoshenko system is a distinguished coupled pair of differential equations arising in mathematical elasticity. In the case of constant coefficients, if a damping is added in only one of its equations, it is well‐known that exponential stability holds if and only if the wave speeds of both equat...
Saved in:
Published in: | Mathematische Nachrichten 2019-12, Vol.292 (12), p.2537-2555 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3176-b1eaede8996d417b6c2c53a1934d692ead1fd16486f7828d147aaabc16658913 |
---|---|
cites | cdi_FETCH-LOGICAL-c3176-b1eaede8996d417b6c2c53a1934d692ead1fd16486f7828d147aaabc16658913 |
container_end_page | 2555 |
container_issue | 12 |
container_start_page | 2537 |
container_title | Mathematische Nachrichten |
container_volume | 292 |
creator | Cardozo, C. L. Jorge Silva, M. A. Ma, T. F. Muñoz Rivera, J. E. |
description | The Timoshenko system is a distinguished coupled pair of differential equations arising in mathematical elasticity. In the case of constant coefficients, if a damping is added in only one of its equations, it is well‐known that exponential stability holds if and only if the wave speeds of both equations are equal. In the present paper we study both non‐homogeneous and homogeneous thermoelastic problems where the model's coefficients are non‐constant and constants, respectively. Our main stability results are proved by means of a unified approach that combines local estimates of the resolvent equation in the semigroup framework with a recent control‐observability analysis for static systems. Therefore, our results complement all those on the linear case provided in [22], by extending the methodology employed in [4] to the case of Timoshenko systems with thermal coupling on the bending moment. |
doi_str_mv | 10.1002/mana.201800546 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2321336988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321336988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-b1eaede8996d417b6c2c53a1934d692ead1fd16486f7828d147aaabc16658913</originalsourceid><addsrcrecordid>eNqFkDFPwzAQRi0EEqWwMltiTvE5iWOPVQUUUWCgA5vlxA51ie0Sp6ry70lUBCPT6Tu97056CF0DmQEh9NYpr2aUACckz9gJmkBOaUIZsFM0GYA8yXn2fo4uYtwSQoQo2AQ9vXWqtI3tehxqvLYuxI3xnwHHPnbGRXyw3QZ3G9M61eAq7HeN9R84-HGHS-P1GF1wxneX6KxWTTRXP3OK1vd368UyWb0-PC7mq6RKoWBJCUYZbbgQTGdQlKyiVZ4qEGmmmaBGaag1sIyzuuCUa8gKpVRZAWM5F5BO0c3x7K4NX3sTO7kN-9YPHyVNKaQpE5wP1OxIVW2IsTW13LXWqbaXQOToS46-5K-voSCOhYNtTP8PLZ_nL_O_7jdAU29p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321336988</pqid></control><display><type>article</type><title>Stability of Timoshenko systems with thermal coupling on the bending moment</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Cardozo, C. L. ; Jorge Silva, M. A. ; Ma, T. F. ; Muñoz Rivera, J. E.</creator><creatorcontrib>Cardozo, C. L. ; Jorge Silva, M. A. ; Ma, T. F. ; Muñoz Rivera, J. E.</creatorcontrib><description>The Timoshenko system is a distinguished coupled pair of differential equations arising in mathematical elasticity. In the case of constant coefficients, if a damping is added in only one of its equations, it is well‐known that exponential stability holds if and only if the wave speeds of both equations are equal. In the present paper we study both non‐homogeneous and homogeneous thermoelastic problems where the model's coefficients are non‐constant and constants, respectively. Our main stability results are proved by means of a unified approach that combines local estimates of the resolvent equation in the semigroup framework with a recent control‐observability analysis for static systems. Therefore, our results complement all those on the linear case provided in [22], by extending the methodology employed in [4] to the case of Timoshenko systems with thermal coupling on the bending moment.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201800546</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>35B35 ; 35B40 ; 35M33 ; 74D05 ; 74K10 ; Bending moments ; Damping ; Differential equations ; Elasticity ; exponential stability ; polynomial decay ; Stability ; Thermal coupling ; thermoelasticity ; Timoshenko system</subject><ispartof>Mathematische Nachrichten, 2019-12, Vol.292 (12), p.2537-2555</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-b1eaede8996d417b6c2c53a1934d692ead1fd16486f7828d147aaabc16658913</citedby><cites>FETCH-LOGICAL-c3176-b1eaede8996d417b6c2c53a1934d692ead1fd16486f7828d147aaabc16658913</cites><orcidid>0000-0002-4806-886X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cardozo, C. L.</creatorcontrib><creatorcontrib>Jorge Silva, M. A.</creatorcontrib><creatorcontrib>Ma, T. F.</creatorcontrib><creatorcontrib>Muñoz Rivera, J. E.</creatorcontrib><title>Stability of Timoshenko systems with thermal coupling on the bending moment</title><title>Mathematische Nachrichten</title><description>The Timoshenko system is a distinguished coupled pair of differential equations arising in mathematical elasticity. In the case of constant coefficients, if a damping is added in only one of its equations, it is well‐known that exponential stability holds if and only if the wave speeds of both equations are equal. In the present paper we study both non‐homogeneous and homogeneous thermoelastic problems where the model's coefficients are non‐constant and constants, respectively. Our main stability results are proved by means of a unified approach that combines local estimates of the resolvent equation in the semigroup framework with a recent control‐observability analysis for static systems. Therefore, our results complement all those on the linear case provided in [22], by extending the methodology employed in [4] to the case of Timoshenko systems with thermal coupling on the bending moment.</description><subject>35B35</subject><subject>35B40</subject><subject>35M33</subject><subject>74D05</subject><subject>74K10</subject><subject>Bending moments</subject><subject>Damping</subject><subject>Differential equations</subject><subject>Elasticity</subject><subject>exponential stability</subject><subject>polynomial decay</subject><subject>Stability</subject><subject>Thermal coupling</subject><subject>thermoelasticity</subject><subject>Timoshenko system</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQRi0EEqWwMltiTvE5iWOPVQUUUWCgA5vlxA51ie0Sp6ry70lUBCPT6Tu97056CF0DmQEh9NYpr2aUACckz9gJmkBOaUIZsFM0GYA8yXn2fo4uYtwSQoQo2AQ9vXWqtI3tehxqvLYuxI3xnwHHPnbGRXyw3QZ3G9M61eAq7HeN9R84-HGHS-P1GF1wxneX6KxWTTRXP3OK1vd368UyWb0-PC7mq6RKoWBJCUYZbbgQTGdQlKyiVZ4qEGmmmaBGaag1sIyzuuCUa8gKpVRZAWM5F5BO0c3x7K4NX3sTO7kN-9YPHyVNKaQpE5wP1OxIVW2IsTW13LXWqbaXQOToS46-5K-voSCOhYNtTP8PLZ_nL_O_7jdAU29p</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Cardozo, C. L.</creator><creator>Jorge Silva, M. A.</creator><creator>Ma, T. F.</creator><creator>Muñoz Rivera, J. E.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4806-886X</orcidid></search><sort><creationdate>201912</creationdate><title>Stability of Timoshenko systems with thermal coupling on the bending moment</title><author>Cardozo, C. L. ; Jorge Silva, M. A. ; Ma, T. F. ; Muñoz Rivera, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-b1eaede8996d417b6c2c53a1934d692ead1fd16486f7828d147aaabc16658913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>35B35</topic><topic>35B40</topic><topic>35M33</topic><topic>74D05</topic><topic>74K10</topic><topic>Bending moments</topic><topic>Damping</topic><topic>Differential equations</topic><topic>Elasticity</topic><topic>exponential stability</topic><topic>polynomial decay</topic><topic>Stability</topic><topic>Thermal coupling</topic><topic>thermoelasticity</topic><topic>Timoshenko system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardozo, C. L.</creatorcontrib><creatorcontrib>Jorge Silva, M. A.</creatorcontrib><creatorcontrib>Ma, T. F.</creatorcontrib><creatorcontrib>Muñoz Rivera, J. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardozo, C. L.</au><au>Jorge Silva, M. A.</au><au>Ma, T. F.</au><au>Muñoz Rivera, J. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Timoshenko systems with thermal coupling on the bending moment</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2019-12</date><risdate>2019</risdate><volume>292</volume><issue>12</issue><spage>2537</spage><epage>2555</epage><pages>2537-2555</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>The Timoshenko system is a distinguished coupled pair of differential equations arising in mathematical elasticity. In the case of constant coefficients, if a damping is added in only one of its equations, it is well‐known that exponential stability holds if and only if the wave speeds of both equations are equal. In the present paper we study both non‐homogeneous and homogeneous thermoelastic problems where the model's coefficients are non‐constant and constants, respectively. Our main stability results are proved by means of a unified approach that combines local estimates of the resolvent equation in the semigroup framework with a recent control‐observability analysis for static systems. Therefore, our results complement all those on the linear case provided in [22], by extending the methodology employed in [4] to the case of Timoshenko systems with thermal coupling on the bending moment.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.201800546</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4806-886X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2019-12, Vol.292 (12), p.2537-2555 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_proquest_journals_2321336988 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 35B35 35B40 35M33 74D05 74K10 Bending moments Damping Differential equations Elasticity exponential stability polynomial decay Stability Thermal coupling thermoelasticity Timoshenko system |
title | Stability of Timoshenko systems with thermal coupling on the bending moment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Timoshenko%20systems%20with%20thermal%20coupling%20on%20the%20bending%20moment&rft.jtitle=Mathematische%20Nachrichten&rft.au=Cardozo,%20C.%20L.&rft.date=2019-12&rft.volume=292&rft.issue=12&rft.spage=2537&rft.epage=2555&rft.pages=2537-2555&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201800546&rft_dat=%3Cproquest_cross%3E2321336988%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3176-b1eaede8996d417b6c2c53a1934d692ead1fd16486f7828d147aaabc16658913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2321336988&rft_id=info:pmid/&rfr_iscdi=true |