Loading…

Contraction of a shear-thinning axisymmetric cavity

We investigate the capillary driven collapse of a small contracting cavity or hole in a shear-thinning fluid. We find that shear-thinning effects accelerate the collapse of the cavity by decreasing the apparent liquid viscosity near the cavity’s moving front. Scaling arguments are used to derive a p...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2019-12, Vol.31 (12)
Main Authors: Lu, Jiakai, Ferri, Michele, Ubal, Sebastian, Campanella, Osvaldo, Corvalan, Carlos M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-dea80000ef0818bf92f0589516b2e06ec495117098aa2486e684ce5624ced4c3
cites cdi_FETCH-LOGICAL-c327t-dea80000ef0818bf92f0589516b2e06ec495117098aa2486e684ce5624ced4c3
container_end_page
container_issue 12
container_start_page
container_title Physics of fluids (1994)
container_volume 31
creator Lu, Jiakai
Ferri, Michele
Ubal, Sebastian
Campanella, Osvaldo
Corvalan, Carlos M.
description We investigate the capillary driven collapse of a small contracting cavity or hole in a shear-thinning fluid. We find that shear-thinning effects accelerate the collapse of the cavity by decreasing the apparent liquid viscosity near the cavity’s moving front. Scaling arguments are used to derive a power-law relationship between the size of the cavity and the rate of collapse. The scaling predictions are then corroborated and fully characterized using high-fidelity simulations. The new findings have implications for natural and technological systems including neck collapse during microbubble pinch-off, the integrity of perforated films and biological membranes, the stability of bubbles and foams in the food industry, and the fabrication of nanopore based biosensors.
doi_str_mv 10.1063/1.5126475
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2321963122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321963122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-dea80000ef0818bf92f0589516b2e06ec495117098aa2486e684ce5624ced4c3</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKsHv8GCJ4WtL8nu2-xRFv9BwUvvIU0Tm-JuapKK--1N2Z69vDeHHzPMEHJLYUEB-SNd1JRh1dRnZEZBtGWDiOdH3UCJyOkluYpxBwC8ZTgjvPNDCkon54fC20IVcWtUKNPWDYMbPgv16-LY9yYFpwutflwar8mFVV_R3Jz-nKxenlfdW7n8eH3vnpal5qxJ5cYokXPAWBBUrG3LLNSirSmumQE0usqaNtAKpVgl0KCotKmR5bupNJ-Tu8l2H_z3wcQkd_4QhpwoGWe0zWUYy9T9ROngYwzGyn1wvQqjpCCPk0gqT5Nk9mFio3ZJHSv_A_8BUnde3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321963122</pqid></control><display><type>article</type><title>Contraction of a shear-thinning axisymmetric cavity</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Lu, Jiakai ; Ferri, Michele ; Ubal, Sebastian ; Campanella, Osvaldo ; Corvalan, Carlos M.</creator><creatorcontrib>Lu, Jiakai ; Ferri, Michele ; Ubal, Sebastian ; Campanella, Osvaldo ; Corvalan, Carlos M.</creatorcontrib><description>We investigate the capillary driven collapse of a small contracting cavity or hole in a shear-thinning fluid. We find that shear-thinning effects accelerate the collapse of the cavity by decreasing the apparent liquid viscosity near the cavity’s moving front. Scaling arguments are used to derive a power-law relationship between the size of the cavity and the rate of collapse. The scaling predictions are then corroborated and fully characterized using high-fidelity simulations. The new findings have implications for natural and technological systems including neck collapse during microbubble pinch-off, the integrity of perforated films and biological membranes, the stability of bubbles and foams in the food industry, and the fabrication of nanopore based biosensors.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5126475</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Biosensors ; Collapse ; Fluid dynamics ; Food processing industry ; Physics ; Porosity ; Shear ; Shear thinning (liquids)</subject><ispartof>Physics of fluids (1994), 2019-12, Vol.31 (12)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-dea80000ef0818bf92f0589516b2e06ec495117098aa2486e684ce5624ced4c3</citedby><cites>FETCH-LOGICAL-c327t-dea80000ef0818bf92f0589516b2e06ec495117098aa2486e684ce5624ced4c3</cites><orcidid>0000-0001-6310-3507 ; 0000-0002-8558-0985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1553,27903,27904</link.rule.ids></links><search><creatorcontrib>Lu, Jiakai</creatorcontrib><creatorcontrib>Ferri, Michele</creatorcontrib><creatorcontrib>Ubal, Sebastian</creatorcontrib><creatorcontrib>Campanella, Osvaldo</creatorcontrib><creatorcontrib>Corvalan, Carlos M.</creatorcontrib><title>Contraction of a shear-thinning axisymmetric cavity</title><title>Physics of fluids (1994)</title><description>We investigate the capillary driven collapse of a small contracting cavity or hole in a shear-thinning fluid. We find that shear-thinning effects accelerate the collapse of the cavity by decreasing the apparent liquid viscosity near the cavity’s moving front. Scaling arguments are used to derive a power-law relationship between the size of the cavity and the rate of collapse. The scaling predictions are then corroborated and fully characterized using high-fidelity simulations. The new findings have implications for natural and technological systems including neck collapse during microbubble pinch-off, the integrity of perforated films and biological membranes, the stability of bubbles and foams in the food industry, and the fabrication of nanopore based biosensors.</description><subject>Biosensors</subject><subject>Collapse</subject><subject>Fluid dynamics</subject><subject>Food processing industry</subject><subject>Physics</subject><subject>Porosity</subject><subject>Shear</subject><subject>Shear thinning (liquids)</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKsHv8GCJ4WtL8nu2-xRFv9BwUvvIU0Tm-JuapKK--1N2Z69vDeHHzPMEHJLYUEB-SNd1JRh1dRnZEZBtGWDiOdH3UCJyOkluYpxBwC8ZTgjvPNDCkon54fC20IVcWtUKNPWDYMbPgv16-LY9yYFpwutflwar8mFVV_R3Jz-nKxenlfdW7n8eH3vnpal5qxJ5cYokXPAWBBUrG3LLNSirSmumQE0usqaNtAKpVgl0KCotKmR5bupNJ-Tu8l2H_z3wcQkd_4QhpwoGWe0zWUYy9T9ROngYwzGyn1wvQqjpCCPk0gqT5Nk9mFio3ZJHSv_A_8BUnde3w</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Lu, Jiakai</creator><creator>Ferri, Michele</creator><creator>Ubal, Sebastian</creator><creator>Campanella, Osvaldo</creator><creator>Corvalan, Carlos M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6310-3507</orcidid><orcidid>https://orcid.org/0000-0002-8558-0985</orcidid></search><sort><creationdate>20191201</creationdate><title>Contraction of a shear-thinning axisymmetric cavity</title><author>Lu, Jiakai ; Ferri, Michele ; Ubal, Sebastian ; Campanella, Osvaldo ; Corvalan, Carlos M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-dea80000ef0818bf92f0589516b2e06ec495117098aa2486e684ce5624ced4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biosensors</topic><topic>Collapse</topic><topic>Fluid dynamics</topic><topic>Food processing industry</topic><topic>Physics</topic><topic>Porosity</topic><topic>Shear</topic><topic>Shear thinning (liquids)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jiakai</creatorcontrib><creatorcontrib>Ferri, Michele</creatorcontrib><creatorcontrib>Ubal, Sebastian</creatorcontrib><creatorcontrib>Campanella, Osvaldo</creatorcontrib><creatorcontrib>Corvalan, Carlos M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Jiakai</au><au>Ferri, Michele</au><au>Ubal, Sebastian</au><au>Campanella, Osvaldo</au><au>Corvalan, Carlos M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contraction of a shear-thinning axisymmetric cavity</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>31</volume><issue>12</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We investigate the capillary driven collapse of a small contracting cavity or hole in a shear-thinning fluid. We find that shear-thinning effects accelerate the collapse of the cavity by decreasing the apparent liquid viscosity near the cavity’s moving front. Scaling arguments are used to derive a power-law relationship between the size of the cavity and the rate of collapse. The scaling predictions are then corroborated and fully characterized using high-fidelity simulations. The new findings have implications for natural and technological systems including neck collapse during microbubble pinch-off, the integrity of perforated films and biological membranes, the stability of bubbles and foams in the food industry, and the fabrication of nanopore based biosensors.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5126475</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6310-3507</orcidid><orcidid>https://orcid.org/0000-0002-8558-0985</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2019-12, Vol.31 (12)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2321963122
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Biosensors
Collapse
Fluid dynamics
Food processing industry
Physics
Porosity
Shear
Shear thinning (liquids)
title Contraction of a shear-thinning axisymmetric cavity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contraction%20of%20a%20shear-thinning%20axisymmetric%20cavity&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Lu,%20Jiakai&rft.date=2019-12-01&rft.volume=31&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5126475&rft_dat=%3Cproquest_scita%3E2321963122%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-dea80000ef0818bf92f0589516b2e06ec495117098aa2486e684ce5624ced4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2321963122&rft_id=info:pmid/&rfr_iscdi=true