Loading…

Dynamics of a four‐wheeled mobile robot with Mecanum wheels

The paper deals with the dynamics of a mobile robot with four Mecanum wheels. For such a system the kinematical rolling conditions lead to non‐holonomic constraints. From the framework of non‐holonomic mechanics Chaplygin's equation is used to obtain the exact equation of motion for the robot....

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Mechanik 2019-12, Vol.99 (12), p.n/a
Main Authors: Zeidis, Igor, Zimmermann, Klaus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3573-2cfed194eb729f7d5e382a8930bef78f9b8f22ba7ced226f948f27d27c519e7f3
cites cdi_FETCH-LOGICAL-c3573-2cfed194eb729f7d5e382a8930bef78f9b8f22ba7ced226f948f27d27c519e7f3
container_end_page n/a
container_issue 12
container_start_page
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 99
creator Zeidis, Igor
Zimmermann, Klaus
description The paper deals with the dynamics of a mobile robot with four Mecanum wheels. For such a system the kinematical rolling conditions lead to non‐holonomic constraints. From the framework of non‐holonomic mechanics Chaplygin's equation is used to obtain the exact equation of motion for the robot. Solving the constraint equations for a part of generalized velocities by using a pseudoinverse matrix the mechanical system is transformed to another system that is not equivalent to the original system. Limiting the consideration to certain special types of motions, e.g., translational motion of the robot or its rotation relative to the center of mass, and impose appropriate constraints on the torques applied to the wheels, the solution obtained by means of the pseudoinverse matrix will coincide with the exact solution. In these cases, the constraints imposed on the system become holonomic constraints, which justifies using Lagrange's equations of the second kind. Holonomic character of the constraints is a sufficient condition for applicability of Lagrange's equations of the second kind but it is not a necessary condition. Using the methods of non‐holonomic mechanics a greather class of trajectories can be achieved. The paper deals with the dynamics of a mobile robot with four Mecanum wheels. For such a system the kinematical rolling conditions lead to non‐holonomic constraints. From the framework of non‐holonomic mechanics Chaplygin's equation is used to obtain the exact equation of motion for the robot. Solving the constraint equations for a part of generalized velocities by using a pseudoinverse matrix the mechanical system is transformed to another system that is not equivalent to the original system….
doi_str_mv 10.1002/zamm.201900173
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322032867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322032867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-2cfed194eb729f7d5e382a8930bef78f9b8f22ba7ced226f948f27d27c519e7f3</originalsourceid><addsrcrecordid>eNqFkL9OwzAQxi0EEqWwMltiTrHPSR0PDFX5K7VigYXFcpyzmqqpi92qChOPwDPyJLgUwch0utPvu_vuI-ScswFnDC7fTNsOgHHFGJfigPR4ATzLU3dIeozleQYwlMfkJMY5S1PFRY9cXXdL0zY2Uu-ooc5vwuf7x3aGuMCatr5qFkiDr_yabpv1jE7RmuWmpd9EPCVHziwinv3UPnm-vXka32eTx7uH8WiSWVFIkYF1WHOVYyVBOVkXKEowpRKsQidLp6rSAVRGWqyTR6fy1MsapC24QulEn1zs966Cf91gXOt5MrpMJzUIACagHMpEDfaUDT7GgE6vQtOa0GnO9C4ivYtI_0aUBGov2KYvu39o_TKaTv-0X-yYa1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322032867</pqid></control><display><type>article</type><title>Dynamics of a four‐wheeled mobile robot with Mecanum wheels</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zeidis, Igor ; Zimmermann, Klaus</creator><creatorcontrib>Zeidis, Igor ; Zimmermann, Klaus</creatorcontrib><description>The paper deals with the dynamics of a mobile robot with four Mecanum wheels. For such a system the kinematical rolling conditions lead to non‐holonomic constraints. From the framework of non‐holonomic mechanics Chaplygin's equation is used to obtain the exact equation of motion for the robot. Solving the constraint equations for a part of generalized velocities by using a pseudoinverse matrix the mechanical system is transformed to another system that is not equivalent to the original system. Limiting the consideration to certain special types of motions, e.g., translational motion of the robot or its rotation relative to the center of mass, and impose appropriate constraints on the torques applied to the wheels, the solution obtained by means of the pseudoinverse matrix will coincide with the exact solution. In these cases, the constraints imposed on the system become holonomic constraints, which justifies using Lagrange's equations of the second kind. Holonomic character of the constraints is a sufficient condition for applicability of Lagrange's equations of the second kind but it is not a necessary condition. Using the methods of non‐holonomic mechanics a greather class of trajectories can be achieved. The paper deals with the dynamics of a mobile robot with four Mecanum wheels. For such a system the kinematical rolling conditions lead to non‐holonomic constraints. From the framework of non‐holonomic mechanics Chaplygin's equation is used to obtain the exact equation of motion for the robot. Solving the constraint equations for a part of generalized velocities by using a pseudoinverse matrix the mechanical system is transformed to another system that is not equivalent to the original system….</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201900173</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chaplygin's equation ; Equations of motion ; Euler-Lagrange equation ; Mathematical analysis ; Mecanum wheels ; Mechanical systems ; Mechanics (physics) ; mobile robots ; non‐holonomic constraints ; Robot dynamics ; Robots ; Translational motion ; Wheels</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2019-12, Vol.99 (12), p.n/a</ispartof><rights>2019 The Authors. Published by Wiley‐VCH Verlag GmbH &amp; Co. KGaA</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-2cfed194eb729f7d5e382a8930bef78f9b8f22ba7ced226f948f27d27c519e7f3</citedby><cites>FETCH-LOGICAL-c3573-2cfed194eb729f7d5e382a8930bef78f9b8f22ba7ced226f948f27d27c519e7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zeidis, Igor</creatorcontrib><creatorcontrib>Zimmermann, Klaus</creatorcontrib><title>Dynamics of a four‐wheeled mobile robot with Mecanum wheels</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>The paper deals with the dynamics of a mobile robot with four Mecanum wheels. For such a system the kinematical rolling conditions lead to non‐holonomic constraints. From the framework of non‐holonomic mechanics Chaplygin's equation is used to obtain the exact equation of motion for the robot. Solving the constraint equations for a part of generalized velocities by using a pseudoinverse matrix the mechanical system is transformed to another system that is not equivalent to the original system. Limiting the consideration to certain special types of motions, e.g., translational motion of the robot or its rotation relative to the center of mass, and impose appropriate constraints on the torques applied to the wheels, the solution obtained by means of the pseudoinverse matrix will coincide with the exact solution. In these cases, the constraints imposed on the system become holonomic constraints, which justifies using Lagrange's equations of the second kind. Holonomic character of the constraints is a sufficient condition for applicability of Lagrange's equations of the second kind but it is not a necessary condition. Using the methods of non‐holonomic mechanics a greather class of trajectories can be achieved. The paper deals with the dynamics of a mobile robot with four Mecanum wheels. For such a system the kinematical rolling conditions lead to non‐holonomic constraints. From the framework of non‐holonomic mechanics Chaplygin's equation is used to obtain the exact equation of motion for the robot. Solving the constraint equations for a part of generalized velocities by using a pseudoinverse matrix the mechanical system is transformed to another system that is not equivalent to the original system….</description><subject>Chaplygin's equation</subject><subject>Equations of motion</subject><subject>Euler-Lagrange equation</subject><subject>Mathematical analysis</subject><subject>Mecanum wheels</subject><subject>Mechanical systems</subject><subject>Mechanics (physics)</subject><subject>mobile robots</subject><subject>non‐holonomic constraints</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Translational motion</subject><subject>Wheels</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkL9OwzAQxi0EEqWwMltiTrHPSR0PDFX5K7VigYXFcpyzmqqpi92qChOPwDPyJLgUwch0utPvu_vuI-ScswFnDC7fTNsOgHHFGJfigPR4ATzLU3dIeozleQYwlMfkJMY5S1PFRY9cXXdL0zY2Uu-ooc5vwuf7x3aGuMCatr5qFkiDr_yabpv1jE7RmuWmpd9EPCVHziwinv3UPnm-vXka32eTx7uH8WiSWVFIkYF1WHOVYyVBOVkXKEowpRKsQidLp6rSAVRGWqyTR6fy1MsapC24QulEn1zs966Cf91gXOt5MrpMJzUIACagHMpEDfaUDT7GgE6vQtOa0GnO9C4ivYtI_0aUBGov2KYvu39o_TKaTv-0X-yYa1c</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Zeidis, Igor</creator><creator>Zimmermann, Klaus</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201912</creationdate><title>Dynamics of a four‐wheeled mobile robot with Mecanum wheels</title><author>Zeidis, Igor ; Zimmermann, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-2cfed194eb729f7d5e382a8930bef78f9b8f22ba7ced226f948f27d27c519e7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chaplygin's equation</topic><topic>Equations of motion</topic><topic>Euler-Lagrange equation</topic><topic>Mathematical analysis</topic><topic>Mecanum wheels</topic><topic>Mechanical systems</topic><topic>Mechanics (physics)</topic><topic>mobile robots</topic><topic>non‐holonomic constraints</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Translational motion</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeidis, Igor</creatorcontrib><creatorcontrib>Zimmermann, Klaus</creatorcontrib><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeidis, Igor</au><au>Zimmermann, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of a four‐wheeled mobile robot with Mecanum wheels</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2019-12</date><risdate>2019</risdate><volume>99</volume><issue>12</issue><epage>n/a</epage><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>The paper deals with the dynamics of a mobile robot with four Mecanum wheels. For such a system the kinematical rolling conditions lead to non‐holonomic constraints. From the framework of non‐holonomic mechanics Chaplygin's equation is used to obtain the exact equation of motion for the robot. Solving the constraint equations for a part of generalized velocities by using a pseudoinverse matrix the mechanical system is transformed to another system that is not equivalent to the original system. Limiting the consideration to certain special types of motions, e.g., translational motion of the robot or its rotation relative to the center of mass, and impose appropriate constraints on the torques applied to the wheels, the solution obtained by means of the pseudoinverse matrix will coincide with the exact solution. In these cases, the constraints imposed on the system become holonomic constraints, which justifies using Lagrange's equations of the second kind. Holonomic character of the constraints is a sufficient condition for applicability of Lagrange's equations of the second kind but it is not a necessary condition. Using the methods of non‐holonomic mechanics a greather class of trajectories can be achieved. The paper deals with the dynamics of a mobile robot with four Mecanum wheels. For such a system the kinematical rolling conditions lead to non‐holonomic constraints. From the framework of non‐holonomic mechanics Chaplygin's equation is used to obtain the exact equation of motion for the robot. Solving the constraint equations for a part of generalized velocities by using a pseudoinverse matrix the mechanical system is transformed to another system that is not equivalent to the original system….</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.201900173</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2019-12, Vol.99 (12), p.n/a
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_journals_2322032867
source Wiley-Blackwell Read & Publish Collection
subjects Chaplygin's equation
Equations of motion
Euler-Lagrange equation
Mathematical analysis
Mecanum wheels
Mechanical systems
Mechanics (physics)
mobile robots
non‐holonomic constraints
Robot dynamics
Robots
Translational motion
Wheels
title Dynamics of a four‐wheeled mobile robot with Mecanum wheels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20a%20four%E2%80%90wheeled%20mobile%20robot%20with%20Mecanum%20wheels&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Zeidis,%20Igor&rft.date=2019-12&rft.volume=99&rft.issue=12&rft.epage=n/a&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201900173&rft_dat=%3Cproquest_cross%3E2322032867%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3573-2cfed194eb729f7d5e382a8930bef78f9b8f22ba7ced226f948f27d27c519e7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2322032867&rft_id=info:pmid/&rfr_iscdi=true