Loading…

On a sequence formed by iterating a divisor operator

Let ℕ be the set of positive integers and let s ∈ ℕ. We denote by d s the arithmetic function given by d s ( n ) = ( d ( n )) s , where d ( n ) is the number of positive divisors of n . Moreover, for every l, m ∈ ℕ we denote by δ s,l,m ( n ) the sequence We present classical and nonclassical notes o...

Full description

Saved in:
Bibliographic Details
Published in:Czechoslovak mathematical journal 2019-12, Vol.69 (4), p.1177-1196
Main Authors: Djamel, Bellaouar, Abdelmadjid, Boudaoud, Özer, Özen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-d75bf23fa50c011e0b68b8a073484b5a3ed26d1d4a329999bd9b0b51c8c38d783
cites cdi_FETCH-LOGICAL-c359t-d75bf23fa50c011e0b68b8a073484b5a3ed26d1d4a329999bd9b0b51c8c38d783
container_end_page 1196
container_issue 4
container_start_page 1177
container_title Czechoslovak mathematical journal
container_volume 69
creator Djamel, Bellaouar
Abdelmadjid, Boudaoud
Özer, Özen
description Let ℕ be the set of positive integers and let s ∈ ℕ. We denote by d s the arithmetic function given by d s ( n ) = ( d ( n )) s , where d ( n ) is the number of positive divisors of n . Moreover, for every l, m ∈ ℕ we denote by δ s,l,m ( n ) the sequence We present classical and nonclassical notes on the sequence ( δ s, l, m ( n )) m ⩾1, where l, n, s are understood as parameters.
doi_str_mv 10.21136/CMJ.2019.0133-18
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2322182263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322182263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d75bf23fa50c011e0b68b8a073484b5a3ed26d1d4a329999bd9b0b51c8c38d783</originalsourceid><addsrcrecordid>eNpFkEtLxDAUhYMoOI7-AHcF1x3vI23TpRSfjMxG1yFpUumg7Zh0BP-9qSN4NxfuOdxz-IS4RFgRIpfXzfPTigDrFSBzjupILLCoKK9R4rFYACDmspR0Ks5i3AIAo1QLITdDZrLoP_d-aH3WjeHDu8x-Z_3kg5n64S3Jrv_q4xiycTffxnAuTjrzHv3F316K17vbl-YhX2_uH5ubdd5yUU-5qwrbEXemgDbFe7ClsspAxVJJWxj2jkqHThqmOo11tQVbYKtaVq5SvBRXh7-7MKaCcdLbcR-GFKmJiVARlZxcdHDFXUh9ffh3IehfOjrR0TMdPdPRqPgHL-lWOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322182263</pqid></control><display><type>article</type><title>On a sequence formed by iterating a divisor operator</title><source>Springer Link</source><creator>Djamel, Bellaouar ; Abdelmadjid, Boudaoud ; Özer, Özen</creator><creatorcontrib>Djamel, Bellaouar ; Abdelmadjid, Boudaoud ; Özer, Özen</creatorcontrib><description>Let ℕ be the set of positive integers and let s ∈ ℕ. We denote by d s the arithmetic function given by d s ( n ) = ( d ( n )) s , where d ( n ) is the number of positive divisors of n . Moreover, for every l, m ∈ ℕ we denote by δ s,l,m ( n ) the sequence We present classical and nonclassical notes on the sequence ( δ s, l, m ( n )) m ⩾1, where l, n, s are understood as parameters.</description><identifier>ISSN: 0011-4642</identifier><identifier>EISSN: 1572-9141</identifier><identifier>DOI: 10.21136/CMJ.2019.0133-18</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Convex and Discrete Geometry ; Mathematical analysis ; Mathematical functions ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations</subject><ispartof>Czechoslovak mathematical journal, 2019-12, Vol.69 (4), p.1177-1196</ispartof><rights>Mathematical Institute, Academy of Sciences of Cz 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d75bf23fa50c011e0b68b8a073484b5a3ed26d1d4a329999bd9b0b51c8c38d783</citedby><cites>FETCH-LOGICAL-c359t-d75bf23fa50c011e0b68b8a073484b5a3ed26d1d4a329999bd9b0b51c8c38d783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Djamel, Bellaouar</creatorcontrib><creatorcontrib>Abdelmadjid, Boudaoud</creatorcontrib><creatorcontrib>Özer, Özen</creatorcontrib><title>On a sequence formed by iterating a divisor operator</title><title>Czechoslovak mathematical journal</title><addtitle>Czech Math J</addtitle><description>Let ℕ be the set of positive integers and let s ∈ ℕ. We denote by d s the arithmetic function given by d s ( n ) = ( d ( n )) s , where d ( n ) is the number of positive divisors of n . Moreover, for every l, m ∈ ℕ we denote by δ s,l,m ( n ) the sequence We present classical and nonclassical notes on the sequence ( δ s, l, m ( n )) m ⩾1, where l, n, s are understood as parameters.</description><subject>Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><issn>0011-4642</issn><issn>1572-9141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkEtLxDAUhYMoOI7-AHcF1x3vI23TpRSfjMxG1yFpUumg7Zh0BP-9qSN4NxfuOdxz-IS4RFgRIpfXzfPTigDrFSBzjupILLCoKK9R4rFYACDmspR0Ks5i3AIAo1QLITdDZrLoP_d-aH3WjeHDu8x-Z_3kg5n64S3Jrv_q4xiycTffxnAuTjrzHv3F316K17vbl-YhX2_uH5ubdd5yUU-5qwrbEXemgDbFe7ClsspAxVJJWxj2jkqHThqmOo11tQVbYKtaVq5SvBRXh7-7MKaCcdLbcR-GFKmJiVARlZxcdHDFXUh9ffh3IehfOjrR0TMdPdPRqPgHL-lWOg</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Djamel, Bellaouar</creator><creator>Abdelmadjid, Boudaoud</creator><creator>Özer, Özen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20191201</creationdate><title>On a sequence formed by iterating a divisor operator</title><author>Djamel, Bellaouar ; Abdelmadjid, Boudaoud ; Özer, Özen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d75bf23fa50c011e0b68b8a073484b5a3ed26d1d4a329999bd9b0b51c8c38d783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djamel, Bellaouar</creatorcontrib><creatorcontrib>Abdelmadjid, Boudaoud</creatorcontrib><creatorcontrib>Özer, Özen</creatorcontrib><jtitle>Czechoslovak mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djamel, Bellaouar</au><au>Abdelmadjid, Boudaoud</au><au>Özer, Özen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a sequence formed by iterating a divisor operator</atitle><jtitle>Czechoslovak mathematical journal</jtitle><stitle>Czech Math J</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>69</volume><issue>4</issue><spage>1177</spage><epage>1196</epage><pages>1177-1196</pages><issn>0011-4642</issn><eissn>1572-9141</eissn><abstract>Let ℕ be the set of positive integers and let s ∈ ℕ. We denote by d s the arithmetic function given by d s ( n ) = ( d ( n )) s , where d ( n ) is the number of positive divisors of n . Moreover, for every l, m ∈ ℕ we denote by δ s,l,m ( n ) the sequence We present classical and nonclassical notes on the sequence ( δ s, l, m ( n )) m ⩾1, where l, n, s are understood as parameters.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/CMJ.2019.0133-18</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0011-4642
ispartof Czechoslovak mathematical journal, 2019-12, Vol.69 (4), p.1177-1196
issn 0011-4642
1572-9141
language eng
recordid cdi_proquest_journals_2322182263
source Springer Link
subjects Analysis
Convex and Discrete Geometry
Mathematical analysis
Mathematical functions
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
title On a sequence formed by iterating a divisor operator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20sequence%20formed%20by%20iterating%20a%20divisor%20operator&rft.jtitle=Czechoslovak%20mathematical%20journal&rft.au=Djamel,%20Bellaouar&rft.date=2019-12-01&rft.volume=69&rft.issue=4&rft.spage=1177&rft.epage=1196&rft.pages=1177-1196&rft.issn=0011-4642&rft.eissn=1572-9141&rft_id=info:doi/10.21136/CMJ.2019.0133-18&rft_dat=%3Cproquest_sprin%3E2322182263%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-d75bf23fa50c011e0b68b8a073484b5a3ed26d1d4a329999bd9b0b51c8c38d783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2322182263&rft_id=info:pmid/&rfr_iscdi=true