Loading…

Obtainment and Analysis of Marker-Free Oil Plants Camelina sativa (L.) Expressing of Antimicrobial Peptide Cecropin P1 Gene

Marker-free transgenic Camelina sativa (L.) plants carrying a synthetic gene for cecropin P1, an antimicrobial peptide, under the control of the cauliflower mosaic virus 35S RNA promoter have been obtained and analyzed. The plants were transformed with an agrobacterial binary vector free of selectiv...

Full description

Saved in:
Bibliographic Details
Published in:Applied biochemistry and microbiology 2019-12, Vol.55 (9), p.888-898
Main Authors: Zakharchenko, N. S., Furs, O. V., Pigoleva, S. V., Dyachenko, O. V., Aripovskii, A. V., Buryanov, Ya. I., Shevchuk, T. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-2c31536246afcb3a7a4850e2d04251bb70fbeb61d20d14abae5b0a4cf5088a093
cites cdi_FETCH-LOGICAL-c353t-2c31536246afcb3a7a4850e2d04251bb70fbeb61d20d14abae5b0a4cf5088a093
container_end_page 898
container_issue 9
container_start_page 888
container_title Applied biochemistry and microbiology
container_volume 55
creator Zakharchenko, N. S.
Furs, O. V.
Pigoleva, S. V.
Dyachenko, O. V.
Aripovskii, A. V.
Buryanov, Ya. I.
Shevchuk, T. V.
description Marker-free transgenic Camelina sativa (L.) plants carrying a synthetic gene for cecropin P1, an antimicrobial peptide, under the control of the cauliflower mosaic virus 35S RNA promoter have been obtained and analyzed. The plants were transformed with an agrobacterial binary vector free of selective genes of antibiotic and herbicide resistance. The marker-free transformants were screened via measurement of the antibacterial activity of cecropin P1 and enzyme immunoassay. The obtained plants exhibited an increased resistance to infection with the bacteria Erwinia carotovora , the fungi Fusarium graminearum , and oxidative stress during infection. Analysis of the fatty acid composition of seed oil showed an increased amount of α-linolenic acid in the transgenic Camelina lines as compared to unmodified plants. The results indicate that the cecropin P1 gene can be included in an integral antistress plant-protective system.
doi_str_mv 10.1134/S0003683819090096
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322183090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322183090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-2c31536246afcb3a7a4850e2d04251bb70fbeb61d20d14abae5b0a4cf5088a093</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLcFL3pInd1N0uRYSluFSgvqOcwmk7I12cbdVCz-eRMqeBBPA_Pe95h5jF0LGAmhwvtnAFBxohKRQgqQxidsIGJIAgUyPGWDXg56_ZxdeL-F3pKkA_a10i0aW5NtOdqCTyxWB28835X8Cd0buWDuiPjKVHxdoW09n2JNlbHIPbbmA_ntcnTHZ5-NI--N3fTkxLamNrnbaYMdR01rCuJT6jaNsXwt-IIsXbKzEitPVz9zyF7ns5fpQ7BcLR6nk2WQq0i1gcyViFQswxjLXCscY5hEQLKAUEZC6zGUmnQsCgmFCFEjRRowzMsIkgQhVUN2c8xt3O59T77Ntru96x71mVRSikR1lXUucXR1R3rvqMwaZ2p0h0xA1nec_em4Y-SR8Z3Xbsj9Jv8PfQMjLH0V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322183090</pqid></control><display><type>article</type><title>Obtainment and Analysis of Marker-Free Oil Plants Camelina sativa (L.) Expressing of Antimicrobial Peptide Cecropin P1 Gene</title><source>Springer Link</source><creator>Zakharchenko, N. S. ; Furs, O. V. ; Pigoleva, S. V. ; Dyachenko, O. V. ; Aripovskii, A. V. ; Buryanov, Ya. I. ; Shevchuk, T. V.</creator><creatorcontrib>Zakharchenko, N. S. ; Furs, O. V. ; Pigoleva, S. V. ; Dyachenko, O. V. ; Aripovskii, A. V. ; Buryanov, Ya. I. ; Shevchuk, T. V.</creatorcontrib><description>Marker-free transgenic Camelina sativa (L.) plants carrying a synthetic gene for cecropin P1, an antimicrobial peptide, under the control of the cauliflower mosaic virus 35S RNA promoter have been obtained and analyzed. The plants were transformed with an agrobacterial binary vector free of selective genes of antibiotic and herbicide resistance. The marker-free transformants were screened via measurement of the antibacterial activity of cecropin P1 and enzyme immunoassay. The obtained plants exhibited an increased resistance to infection with the bacteria Erwinia carotovora , the fungi Fusarium graminearum , and oxidative stress during infection. Analysis of the fatty acid composition of seed oil showed an increased amount of α-linolenic acid in the transgenic Camelina lines as compared to unmodified plants. The results indicate that the cecropin P1 gene can be included in an integral antistress plant-protective system.</description><identifier>ISSN: 0003-6838</identifier><identifier>EISSN: 1608-3024</identifier><identifier>DOI: 10.1134/S0003683819090096</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Antibacterial activity ; Antibiotics ; Antimicrobial agents ; Antimicrobial peptides ; Bacteria ; Biochemistry ; Biology ; Biomarkers ; Biomedical and Life Sciences ; Camelina sativa ; Cecropin ; Enzyme immunoassay ; Fatty acid composition ; Fatty acids ; Fungi ; Fusarium graminearum ; Gene Engineering ; Herbicide resistance ; Herbicides ; Immunoassay ; Life Sciences ; Linolenic acid ; Medical Microbiology ; Microbiology ; Oils &amp; fats ; Oxidative stress ; p1 gene ; Peptides ; Plant protection ; Plant virus diseases ; Producers ; Ribonucleic acid ; RNA ; RNA viruses ; Seeds ; Selection ; Transgenic plants ; Viruses</subject><ispartof>Applied biochemistry and microbiology, 2019-12, Vol.55 (9), p.888-898</ispartof><rights>Pleiades Publishing, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-2c31536246afcb3a7a4850e2d04251bb70fbeb61d20d14abae5b0a4cf5088a093</citedby><cites>FETCH-LOGICAL-c353t-2c31536246afcb3a7a4850e2d04251bb70fbeb61d20d14abae5b0a4cf5088a093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zakharchenko, N. S.</creatorcontrib><creatorcontrib>Furs, O. V.</creatorcontrib><creatorcontrib>Pigoleva, S. V.</creatorcontrib><creatorcontrib>Dyachenko, O. V.</creatorcontrib><creatorcontrib>Aripovskii, A. V.</creatorcontrib><creatorcontrib>Buryanov, Ya. I.</creatorcontrib><creatorcontrib>Shevchuk, T. V.</creatorcontrib><title>Obtainment and Analysis of Marker-Free Oil Plants Camelina sativa (L.) Expressing of Antimicrobial Peptide Cecropin P1 Gene</title><title>Applied biochemistry and microbiology</title><addtitle>Appl Biochem Microbiol</addtitle><description>Marker-free transgenic Camelina sativa (L.) plants carrying a synthetic gene for cecropin P1, an antimicrobial peptide, under the control of the cauliflower mosaic virus 35S RNA promoter have been obtained and analyzed. The plants were transformed with an agrobacterial binary vector free of selective genes of antibiotic and herbicide resistance. The marker-free transformants were screened via measurement of the antibacterial activity of cecropin P1 and enzyme immunoassay. The obtained plants exhibited an increased resistance to infection with the bacteria Erwinia carotovora , the fungi Fusarium graminearum , and oxidative stress during infection. Analysis of the fatty acid composition of seed oil showed an increased amount of α-linolenic acid in the transgenic Camelina lines as compared to unmodified plants. The results indicate that the cecropin P1 gene can be included in an integral antistress plant-protective system.</description><subject>Antibacterial activity</subject><subject>Antibiotics</subject><subject>Antimicrobial agents</subject><subject>Antimicrobial peptides</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Camelina sativa</subject><subject>Cecropin</subject><subject>Enzyme immunoassay</subject><subject>Fatty acid composition</subject><subject>Fatty acids</subject><subject>Fungi</subject><subject>Fusarium graminearum</subject><subject>Gene Engineering</subject><subject>Herbicide resistance</subject><subject>Herbicides</subject><subject>Immunoassay</subject><subject>Life Sciences</subject><subject>Linolenic acid</subject><subject>Medical Microbiology</subject><subject>Microbiology</subject><subject>Oils &amp; fats</subject><subject>Oxidative stress</subject><subject>p1 gene</subject><subject>Peptides</subject><subject>Plant protection</subject><subject>Plant virus diseases</subject><subject>Producers</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA viruses</subject><subject>Seeds</subject><subject>Selection</subject><subject>Transgenic plants</subject><subject>Viruses</subject><issn>0003-6838</issn><issn>1608-3024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFZ_gLcFL3pInd1N0uRYSluFSgvqOcwmk7I12cbdVCz-eRMqeBBPA_Pe95h5jF0LGAmhwvtnAFBxohKRQgqQxidsIGJIAgUyPGWDXg56_ZxdeL-F3pKkA_a10i0aW5NtOdqCTyxWB28835X8Cd0buWDuiPjKVHxdoW09n2JNlbHIPbbmA_ntcnTHZ5-NI--N3fTkxLamNrnbaYMdR01rCuJT6jaNsXwt-IIsXbKzEitPVz9zyF7ns5fpQ7BcLR6nk2WQq0i1gcyViFQswxjLXCscY5hEQLKAUEZC6zGUmnQsCgmFCFEjRRowzMsIkgQhVUN2c8xt3O59T77Ntru96x71mVRSikR1lXUucXR1R3rvqMwaZ2p0h0xA1nec_em4Y-SR8Z3Xbsj9Jv8PfQMjLH0V</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Zakharchenko, N. S.</creator><creator>Furs, O. V.</creator><creator>Pigoleva, S. V.</creator><creator>Dyachenko, O. V.</creator><creator>Aripovskii, A. V.</creator><creator>Buryanov, Ya. I.</creator><creator>Shevchuk, T. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20191201</creationdate><title>Obtainment and Analysis of Marker-Free Oil Plants Camelina sativa (L.) Expressing of Antimicrobial Peptide Cecropin P1 Gene</title><author>Zakharchenko, N. S. ; Furs, O. V. ; Pigoleva, S. V. ; Dyachenko, O. V. ; Aripovskii, A. V. ; Buryanov, Ya. I. ; Shevchuk, T. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-2c31536246afcb3a7a4850e2d04251bb70fbeb61d20d14abae5b0a4cf5088a093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antibacterial activity</topic><topic>Antibiotics</topic><topic>Antimicrobial agents</topic><topic>Antimicrobial peptides</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Camelina sativa</topic><topic>Cecropin</topic><topic>Enzyme immunoassay</topic><topic>Fatty acid composition</topic><topic>Fatty acids</topic><topic>Fungi</topic><topic>Fusarium graminearum</topic><topic>Gene Engineering</topic><topic>Herbicide resistance</topic><topic>Herbicides</topic><topic>Immunoassay</topic><topic>Life Sciences</topic><topic>Linolenic acid</topic><topic>Medical Microbiology</topic><topic>Microbiology</topic><topic>Oils &amp; fats</topic><topic>Oxidative stress</topic><topic>p1 gene</topic><topic>Peptides</topic><topic>Plant protection</topic><topic>Plant virus diseases</topic><topic>Producers</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA viruses</topic><topic>Seeds</topic><topic>Selection</topic><topic>Transgenic plants</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakharchenko, N. S.</creatorcontrib><creatorcontrib>Furs, O. V.</creatorcontrib><creatorcontrib>Pigoleva, S. V.</creatorcontrib><creatorcontrib>Dyachenko, O. V.</creatorcontrib><creatorcontrib>Aripovskii, A. V.</creatorcontrib><creatorcontrib>Buryanov, Ya. I.</creatorcontrib><creatorcontrib>Shevchuk, T. V.</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Applied biochemistry and microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakharchenko, N. S.</au><au>Furs, O. V.</au><au>Pigoleva, S. V.</au><au>Dyachenko, O. V.</au><au>Aripovskii, A. V.</au><au>Buryanov, Ya. I.</au><au>Shevchuk, T. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obtainment and Analysis of Marker-Free Oil Plants Camelina sativa (L.) Expressing of Antimicrobial Peptide Cecropin P1 Gene</atitle><jtitle>Applied biochemistry and microbiology</jtitle><stitle>Appl Biochem Microbiol</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>55</volume><issue>9</issue><spage>888</spage><epage>898</epage><pages>888-898</pages><issn>0003-6838</issn><eissn>1608-3024</eissn><abstract>Marker-free transgenic Camelina sativa (L.) plants carrying a synthetic gene for cecropin P1, an antimicrobial peptide, under the control of the cauliflower mosaic virus 35S RNA promoter have been obtained and analyzed. The plants were transformed with an agrobacterial binary vector free of selective genes of antibiotic and herbicide resistance. The marker-free transformants were screened via measurement of the antibacterial activity of cecropin P1 and enzyme immunoassay. The obtained plants exhibited an increased resistance to infection with the bacteria Erwinia carotovora , the fungi Fusarium graminearum , and oxidative stress during infection. Analysis of the fatty acid composition of seed oil showed an increased amount of α-linolenic acid in the transgenic Camelina lines as compared to unmodified plants. The results indicate that the cecropin P1 gene can be included in an integral antistress plant-protective system.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0003683819090096</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6838
ispartof Applied biochemistry and microbiology, 2019-12, Vol.55 (9), p.888-898
issn 0003-6838
1608-3024
language eng
recordid cdi_proquest_journals_2322183090
source Springer Link
subjects Antibacterial activity
Antibiotics
Antimicrobial agents
Antimicrobial peptides
Bacteria
Biochemistry
Biology
Biomarkers
Biomedical and Life Sciences
Camelina sativa
Cecropin
Enzyme immunoassay
Fatty acid composition
Fatty acids
Fungi
Fusarium graminearum
Gene Engineering
Herbicide resistance
Herbicides
Immunoassay
Life Sciences
Linolenic acid
Medical Microbiology
Microbiology
Oils & fats
Oxidative stress
p1 gene
Peptides
Plant protection
Plant virus diseases
Producers
Ribonucleic acid
RNA
RNA viruses
Seeds
Selection
Transgenic plants
Viruses
title Obtainment and Analysis of Marker-Free Oil Plants Camelina sativa (L.) Expressing of Antimicrobial Peptide Cecropin P1 Gene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obtainment%20and%20Analysis%20of%20Marker-Free%20Oil%20Plants%20Camelina%20sativa%20(L.)%20Expressing%20of%20Antimicrobial%20Peptide%20Cecropin%20P1%20Gene&rft.jtitle=Applied%20biochemistry%20and%20microbiology&rft.au=Zakharchenko,%20N.%20S.&rft.date=2019-12-01&rft.volume=55&rft.issue=9&rft.spage=888&rft.epage=898&rft.pages=888-898&rft.issn=0003-6838&rft.eissn=1608-3024&rft_id=info:doi/10.1134/S0003683819090096&rft_dat=%3Cproquest_cross%3E2322183090%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-2c31536246afcb3a7a4850e2d04251bb70fbeb61d20d14abae5b0a4cf5088a093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2322183090&rft_id=info:pmid/&rfr_iscdi=true