Loading…
Obtainment and Analysis of Marker-Free Oil Plants Camelina sativa (L.) Expressing of Antimicrobial Peptide Cecropin P1 Gene
Marker-free transgenic Camelina sativa (L.) plants carrying a synthetic gene for cecropin P1, an antimicrobial peptide, under the control of the cauliflower mosaic virus 35S RNA promoter have been obtained and analyzed. The plants were transformed with an agrobacterial binary vector free of selectiv...
Saved in:
Published in: | Applied biochemistry and microbiology 2019-12, Vol.55 (9), p.888-898 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-2c31536246afcb3a7a4850e2d04251bb70fbeb61d20d14abae5b0a4cf5088a093 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-2c31536246afcb3a7a4850e2d04251bb70fbeb61d20d14abae5b0a4cf5088a093 |
container_end_page | 898 |
container_issue | 9 |
container_start_page | 888 |
container_title | Applied biochemistry and microbiology |
container_volume | 55 |
creator | Zakharchenko, N. S. Furs, O. V. Pigoleva, S. V. Dyachenko, O. V. Aripovskii, A. V. Buryanov, Ya. I. Shevchuk, T. V. |
description | Marker-free transgenic
Camelina sativa
(L.) plants carrying a synthetic gene for cecropin P1, an antimicrobial peptide, under the control of the cauliflower mosaic virus 35S RNA promoter have been obtained and analyzed. The plants were transformed with an agrobacterial binary vector free of selective genes of antibiotic and herbicide resistance. The marker-free transformants were screened via measurement of the antibacterial activity of cecropin P1 and enzyme immunoassay. The obtained plants exhibited an increased resistance to infection with the bacteria
Erwinia carotovora
, the fungi
Fusarium graminearum
, and oxidative stress during infection. Analysis of the fatty acid composition of seed oil showed an increased amount of α-linolenic acid in the transgenic
Camelina
lines as compared to unmodified plants. The results indicate that the cecropin P1 gene can be included in an integral antistress plant-protective system. |
doi_str_mv | 10.1134/S0003683819090096 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322183090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322183090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-2c31536246afcb3a7a4850e2d04251bb70fbeb61d20d14abae5b0a4cf5088a093</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLcFL3pInd1N0uRYSluFSgvqOcwmk7I12cbdVCz-eRMqeBBPA_Pe95h5jF0LGAmhwvtnAFBxohKRQgqQxidsIGJIAgUyPGWDXg56_ZxdeL-F3pKkA_a10i0aW5NtOdqCTyxWB28835X8Cd0buWDuiPjKVHxdoW09n2JNlbHIPbbmA_ntcnTHZ5-NI--N3fTkxLamNrnbaYMdR01rCuJT6jaNsXwt-IIsXbKzEitPVz9zyF7ns5fpQ7BcLR6nk2WQq0i1gcyViFQswxjLXCscY5hEQLKAUEZC6zGUmnQsCgmFCFEjRRowzMsIkgQhVUN2c8xt3O59T77Ntru96x71mVRSikR1lXUucXR1R3rvqMwaZ2p0h0xA1nec_em4Y-SR8Z3Xbsj9Jv8PfQMjLH0V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322183090</pqid></control><display><type>article</type><title>Obtainment and Analysis of Marker-Free Oil Plants Camelina sativa (L.) Expressing of Antimicrobial Peptide Cecropin P1 Gene</title><source>Springer Link</source><creator>Zakharchenko, N. S. ; Furs, O. V. ; Pigoleva, S. V. ; Dyachenko, O. V. ; Aripovskii, A. V. ; Buryanov, Ya. I. ; Shevchuk, T. V.</creator><creatorcontrib>Zakharchenko, N. S. ; Furs, O. V. ; Pigoleva, S. V. ; Dyachenko, O. V. ; Aripovskii, A. V. ; Buryanov, Ya. I. ; Shevchuk, T. V.</creatorcontrib><description>Marker-free transgenic
Camelina sativa
(L.) plants carrying a synthetic gene for cecropin P1, an antimicrobial peptide, under the control of the cauliflower mosaic virus 35S RNA promoter have been obtained and analyzed. The plants were transformed with an agrobacterial binary vector free of selective genes of antibiotic and herbicide resistance. The marker-free transformants were screened via measurement of the antibacterial activity of cecropin P1 and enzyme immunoassay. The obtained plants exhibited an increased resistance to infection with the bacteria
Erwinia carotovora
, the fungi
Fusarium graminearum
, and oxidative stress during infection. Analysis of the fatty acid composition of seed oil showed an increased amount of α-linolenic acid in the transgenic
Camelina
lines as compared to unmodified plants. The results indicate that the cecropin P1 gene can be included in an integral antistress plant-protective system.</description><identifier>ISSN: 0003-6838</identifier><identifier>EISSN: 1608-3024</identifier><identifier>DOI: 10.1134/S0003683819090096</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Antibacterial activity ; Antibiotics ; Antimicrobial agents ; Antimicrobial peptides ; Bacteria ; Biochemistry ; Biology ; Biomarkers ; Biomedical and Life Sciences ; Camelina sativa ; Cecropin ; Enzyme immunoassay ; Fatty acid composition ; Fatty acids ; Fungi ; Fusarium graminearum ; Gene Engineering ; Herbicide resistance ; Herbicides ; Immunoassay ; Life Sciences ; Linolenic acid ; Medical Microbiology ; Microbiology ; Oils & fats ; Oxidative stress ; p1 gene ; Peptides ; Plant protection ; Plant virus diseases ; Producers ; Ribonucleic acid ; RNA ; RNA viruses ; Seeds ; Selection ; Transgenic plants ; Viruses</subject><ispartof>Applied biochemistry and microbiology, 2019-12, Vol.55 (9), p.888-898</ispartof><rights>Pleiades Publishing, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-2c31536246afcb3a7a4850e2d04251bb70fbeb61d20d14abae5b0a4cf5088a093</citedby><cites>FETCH-LOGICAL-c353t-2c31536246afcb3a7a4850e2d04251bb70fbeb61d20d14abae5b0a4cf5088a093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zakharchenko, N. S.</creatorcontrib><creatorcontrib>Furs, O. V.</creatorcontrib><creatorcontrib>Pigoleva, S. V.</creatorcontrib><creatorcontrib>Dyachenko, O. V.</creatorcontrib><creatorcontrib>Aripovskii, A. V.</creatorcontrib><creatorcontrib>Buryanov, Ya. I.</creatorcontrib><creatorcontrib>Shevchuk, T. V.</creatorcontrib><title>Obtainment and Analysis of Marker-Free Oil Plants Camelina sativa (L.) Expressing of Antimicrobial Peptide Cecropin P1 Gene</title><title>Applied biochemistry and microbiology</title><addtitle>Appl Biochem Microbiol</addtitle><description>Marker-free transgenic
Camelina sativa
(L.) plants carrying a synthetic gene for cecropin P1, an antimicrobial peptide, under the control of the cauliflower mosaic virus 35S RNA promoter have been obtained and analyzed. The plants were transformed with an agrobacterial binary vector free of selective genes of antibiotic and herbicide resistance. The marker-free transformants were screened via measurement of the antibacterial activity of cecropin P1 and enzyme immunoassay. The obtained plants exhibited an increased resistance to infection with the bacteria
Erwinia carotovora
, the fungi
Fusarium graminearum
, and oxidative stress during infection. Analysis of the fatty acid composition of seed oil showed an increased amount of α-linolenic acid in the transgenic
Camelina
lines as compared to unmodified plants. The results indicate that the cecropin P1 gene can be included in an integral antistress plant-protective system.</description><subject>Antibacterial activity</subject><subject>Antibiotics</subject><subject>Antimicrobial agents</subject><subject>Antimicrobial peptides</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Camelina sativa</subject><subject>Cecropin</subject><subject>Enzyme immunoassay</subject><subject>Fatty acid composition</subject><subject>Fatty acids</subject><subject>Fungi</subject><subject>Fusarium graminearum</subject><subject>Gene Engineering</subject><subject>Herbicide resistance</subject><subject>Herbicides</subject><subject>Immunoassay</subject><subject>Life Sciences</subject><subject>Linolenic acid</subject><subject>Medical Microbiology</subject><subject>Microbiology</subject><subject>Oils & fats</subject><subject>Oxidative stress</subject><subject>p1 gene</subject><subject>Peptides</subject><subject>Plant protection</subject><subject>Plant virus diseases</subject><subject>Producers</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA viruses</subject><subject>Seeds</subject><subject>Selection</subject><subject>Transgenic plants</subject><subject>Viruses</subject><issn>0003-6838</issn><issn>1608-3024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFZ_gLcFL3pInd1N0uRYSluFSgvqOcwmk7I12cbdVCz-eRMqeBBPA_Pe95h5jF0LGAmhwvtnAFBxohKRQgqQxidsIGJIAgUyPGWDXg56_ZxdeL-F3pKkA_a10i0aW5NtOdqCTyxWB28835X8Cd0buWDuiPjKVHxdoW09n2JNlbHIPbbmA_ntcnTHZ5-NI--N3fTkxLamNrnbaYMdR01rCuJT6jaNsXwt-IIsXbKzEitPVz9zyF7ns5fpQ7BcLR6nk2WQq0i1gcyViFQswxjLXCscY5hEQLKAUEZC6zGUmnQsCgmFCFEjRRowzMsIkgQhVUN2c8xt3O59T77Ntru96x71mVRSikR1lXUucXR1R3rvqMwaZ2p0h0xA1nec_em4Y-SR8Z3Xbsj9Jv8PfQMjLH0V</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Zakharchenko, N. S.</creator><creator>Furs, O. V.</creator><creator>Pigoleva, S. V.</creator><creator>Dyachenko, O. V.</creator><creator>Aripovskii, A. V.</creator><creator>Buryanov, Ya. I.</creator><creator>Shevchuk, T. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20191201</creationdate><title>Obtainment and Analysis of Marker-Free Oil Plants Camelina sativa (L.) Expressing of Antimicrobial Peptide Cecropin P1 Gene</title><author>Zakharchenko, N. S. ; Furs, O. V. ; Pigoleva, S. V. ; Dyachenko, O. V. ; Aripovskii, A. V. ; Buryanov, Ya. I. ; Shevchuk, T. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-2c31536246afcb3a7a4850e2d04251bb70fbeb61d20d14abae5b0a4cf5088a093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antibacterial activity</topic><topic>Antibiotics</topic><topic>Antimicrobial agents</topic><topic>Antimicrobial peptides</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Camelina sativa</topic><topic>Cecropin</topic><topic>Enzyme immunoassay</topic><topic>Fatty acid composition</topic><topic>Fatty acids</topic><topic>Fungi</topic><topic>Fusarium graminearum</topic><topic>Gene Engineering</topic><topic>Herbicide resistance</topic><topic>Herbicides</topic><topic>Immunoassay</topic><topic>Life Sciences</topic><topic>Linolenic acid</topic><topic>Medical Microbiology</topic><topic>Microbiology</topic><topic>Oils & fats</topic><topic>Oxidative stress</topic><topic>p1 gene</topic><topic>Peptides</topic><topic>Plant protection</topic><topic>Plant virus diseases</topic><topic>Producers</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA viruses</topic><topic>Seeds</topic><topic>Selection</topic><topic>Transgenic plants</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakharchenko, N. S.</creatorcontrib><creatorcontrib>Furs, O. V.</creatorcontrib><creatorcontrib>Pigoleva, S. V.</creatorcontrib><creatorcontrib>Dyachenko, O. V.</creatorcontrib><creatorcontrib>Aripovskii, A. V.</creatorcontrib><creatorcontrib>Buryanov, Ya. I.</creatorcontrib><creatorcontrib>Shevchuk, T. V.</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Applied biochemistry and microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakharchenko, N. S.</au><au>Furs, O. V.</au><au>Pigoleva, S. V.</au><au>Dyachenko, O. V.</au><au>Aripovskii, A. V.</au><au>Buryanov, Ya. I.</au><au>Shevchuk, T. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obtainment and Analysis of Marker-Free Oil Plants Camelina sativa (L.) Expressing of Antimicrobial Peptide Cecropin P1 Gene</atitle><jtitle>Applied biochemistry and microbiology</jtitle><stitle>Appl Biochem Microbiol</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>55</volume><issue>9</issue><spage>888</spage><epage>898</epage><pages>888-898</pages><issn>0003-6838</issn><eissn>1608-3024</eissn><abstract>Marker-free transgenic
Camelina sativa
(L.) plants carrying a synthetic gene for cecropin P1, an antimicrobial peptide, under the control of the cauliflower mosaic virus 35S RNA promoter have been obtained and analyzed. The plants were transformed with an agrobacterial binary vector free of selective genes of antibiotic and herbicide resistance. The marker-free transformants were screened via measurement of the antibacterial activity of cecropin P1 and enzyme immunoassay. The obtained plants exhibited an increased resistance to infection with the bacteria
Erwinia carotovora
, the fungi
Fusarium graminearum
, and oxidative stress during infection. Analysis of the fatty acid composition of seed oil showed an increased amount of α-linolenic acid in the transgenic
Camelina
lines as compared to unmodified plants. The results indicate that the cecropin P1 gene can be included in an integral antistress plant-protective system.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0003683819090096</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6838 |
ispartof | Applied biochemistry and microbiology, 2019-12, Vol.55 (9), p.888-898 |
issn | 0003-6838 1608-3024 |
language | eng |
recordid | cdi_proquest_journals_2322183090 |
source | Springer Link |
subjects | Antibacterial activity Antibiotics Antimicrobial agents Antimicrobial peptides Bacteria Biochemistry Biology Biomarkers Biomedical and Life Sciences Camelina sativa Cecropin Enzyme immunoassay Fatty acid composition Fatty acids Fungi Fusarium graminearum Gene Engineering Herbicide resistance Herbicides Immunoassay Life Sciences Linolenic acid Medical Microbiology Microbiology Oils & fats Oxidative stress p1 gene Peptides Plant protection Plant virus diseases Producers Ribonucleic acid RNA RNA viruses Seeds Selection Transgenic plants Viruses |
title | Obtainment and Analysis of Marker-Free Oil Plants Camelina sativa (L.) Expressing of Antimicrobial Peptide Cecropin P1 Gene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obtainment%20and%20Analysis%20of%20Marker-Free%20Oil%20Plants%20Camelina%20sativa%20(L.)%20Expressing%20of%20Antimicrobial%20Peptide%20Cecropin%20P1%20Gene&rft.jtitle=Applied%20biochemistry%20and%20microbiology&rft.au=Zakharchenko,%20N.%20S.&rft.date=2019-12-01&rft.volume=55&rft.issue=9&rft.spage=888&rft.epage=898&rft.pages=888-898&rft.issn=0003-6838&rft.eissn=1608-3024&rft_id=info:doi/10.1134/S0003683819090096&rft_dat=%3Cproquest_cross%3E2322183090%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-2c31536246afcb3a7a4850e2d04251bb70fbeb61d20d14abae5b0a4cf5088a093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2322183090&rft_id=info:pmid/&rfr_iscdi=true |