Loading…

Accounting for time‐dependent treatment use when developing a prognostic model from observational data: A review of methods

Failure to account for time‐dependent treatment use when developing a prognostic model can result in biased future predictions. We reviewed currently available methods to account for treatment use when developing a prognostic model. First, we defined the estimands targeted by each method and examine...

Full description

Saved in:
Bibliographic Details
Published in:Statistica Neerlandica 2020-02, Vol.74 (1), p.38-51
Main Authors: Pajouheshnia, Romin, Schuster, Noah A., Groenwold, Rolf H. H., Rutten, Frans H., Moons, Karel G. M., Peelen, Linda M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3703-b535bd9287f4c8ece6021413b0182d4d2691950f6aa74c07d7a125ca11191e173
cites cdi_FETCH-LOGICAL-c3703-b535bd9287f4c8ece6021413b0182d4d2691950f6aa74c07d7a125ca11191e173
container_end_page 51
container_issue 1
container_start_page 38
container_title Statistica Neerlandica
container_volume 74
creator Pajouheshnia, Romin
Schuster, Noah A.
Groenwold, Rolf H. H.
Rutten, Frans H.
Moons, Karel G. M.
Peelen, Linda M.
description Failure to account for time‐dependent treatment use when developing a prognostic model can result in biased future predictions. We reviewed currently available methods to account for treatment use when developing a prognostic model. First, we defined the estimands targeted by each method and examined their mechanisms of action with directed acyclic graphs (DAGs). Next, methods were implemented in data from 1,906 patients; 325 received selective β‐blockers (SBBs) during follow‐up. We demonstrated seven Cox regression modeling strategies: (a) ignoring SBB treatment; (b) excluding SBB users or (c) censoring them when treated; (d) inverse probability of treatment weighting after censoring (IPCW), including SBB treatment as (e) a binary or (f) a time‐dependent covariate; and (g) marginal structural modeling (MSM). Using DAGs, we demonstrated IPCW and MSM have the best properties and target a similar estimand. In the case study, compared to (a), approaches (b) and (e) provided predictions that were 1% and 2% higher on average. Performance (c‐statistic, Brier score, calibration slope) varied minimally between approaches. Our review of methods confirmed that ignoring treatment is theoretically inferior, but differences between the prediction models obtained using different methods can be modest in practice. Future simulation studies and applications are needed to assess the value of applying IPCW or MSM to adjust for treatments in different treatment and disease settings.
doi_str_mv 10.1111/stan.12193
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322581496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322581496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3703-b535bd9287f4c8ece6021413b0182d4d2691950f6aa74c07d7a125ca11191e173</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8Stxza6qeEkVLCjryLEnbaokLrbbqgskPoFv5EtIKGtmM7M4d3R1ELqkZES7uQlRtyPKqOJHaEBFJhOVSnGMBoRwlRBB2Ck6C2FFCJVKZAP0MTHGbdpYtQtcOo9j1cD355eFNbQW2oijBx2b_toEwLsltNjCFmq37iMar71btC7EyuDGWahx6V2DXRHAb3WsXKtrbHXUt3iCPWwr2GFX4gbi0tlwjk5KXQe4-NtD9HZ_N58-JrOXh6fpZJYYLglPipSnhVVsLEthxmAgI4wKygtCx8wKyzJFVUrKTGspDJFWaspSozsjigKVfIiuDn-7tu8bCDFfuY3vqoWcccbSMRUq66jrA2W8C8FDma991Wi_zynJe715rzf_1dvB9ADvqhr2_5D563zyfMj8ACpuf2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322581496</pqid></control><display><type>article</type><title>Accounting for time‐dependent treatment use when developing a prognostic model from observational data: A review of methods</title><source>EBSCOhost Business Source Ultimate</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Pajouheshnia, Romin ; Schuster, Noah A. ; Groenwold, Rolf H. H. ; Rutten, Frans H. ; Moons, Karel G. M. ; Peelen, Linda M.</creator><creatorcontrib>Pajouheshnia, Romin ; Schuster, Noah A. ; Groenwold, Rolf H. H. ; Rutten, Frans H. ; Moons, Karel G. M. ; Peelen, Linda M.</creatorcontrib><description>Failure to account for time‐dependent treatment use when developing a prognostic model can result in biased future predictions. We reviewed currently available methods to account for treatment use when developing a prognostic model. First, we defined the estimands targeted by each method and examined their mechanisms of action with directed acyclic graphs (DAGs). Next, methods were implemented in data from 1,906 patients; 325 received selective β‐blockers (SBBs) during follow‐up. We demonstrated seven Cox regression modeling strategies: (a) ignoring SBB treatment; (b) excluding SBB users or (c) censoring them when treated; (d) inverse probability of treatment weighting after censoring (IPCW), including SBB treatment as (e) a binary or (f) a time‐dependent covariate; and (g) marginal structural modeling (MSM). Using DAGs, we demonstrated IPCW and MSM have the best properties and target a similar estimand. In the case study, compared to (a), approaches (b) and (e) provided predictions that were 1% and 2% higher on average. Performance (c‐statistic, Brier score, calibration slope) varied minimally between approaches. Our review of methods confirmed that ignoring treatment is theoretically inferior, but differences between the prediction models obtained using different methods can be modest in practice. Future simulation studies and applications are needed to assess the value of applying IPCW or MSM to adjust for treatments in different treatment and disease settings.</description><identifier>ISSN: 0039-0402</identifier><identifier>EISSN: 1467-9574</identifier><identifier>DOI: 10.1111/stan.12193</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Computer simulation ; Cox regression ; Graph theory ; inverse probability weights ; marginal structural model ; Modelling ; prediction ; prognosis ; Statistical analysis ; Time dependence</subject><ispartof>Statistica Neerlandica, 2020-02, Vol.74 (1), p.38-51</ispartof><rights>2019 The Authors. Published by John Wiley &amp; Sons, Ltd. on behalf of VVS.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3703-b535bd9287f4c8ece6021413b0182d4d2691950f6aa74c07d7a125ca11191e173</citedby><cites>FETCH-LOGICAL-c3703-b535bd9287f4c8ece6021413b0182d4d2691950f6aa74c07d7a125ca11191e173</cites><orcidid>0000-0002-4208-3583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pajouheshnia, Romin</creatorcontrib><creatorcontrib>Schuster, Noah A.</creatorcontrib><creatorcontrib>Groenwold, Rolf H. H.</creatorcontrib><creatorcontrib>Rutten, Frans H.</creatorcontrib><creatorcontrib>Moons, Karel G. M.</creatorcontrib><creatorcontrib>Peelen, Linda M.</creatorcontrib><title>Accounting for time‐dependent treatment use when developing a prognostic model from observational data: A review of methods</title><title>Statistica Neerlandica</title><description>Failure to account for time‐dependent treatment use when developing a prognostic model can result in biased future predictions. We reviewed currently available methods to account for treatment use when developing a prognostic model. First, we defined the estimands targeted by each method and examined their mechanisms of action with directed acyclic graphs (DAGs). Next, methods were implemented in data from 1,906 patients; 325 received selective β‐blockers (SBBs) during follow‐up. We demonstrated seven Cox regression modeling strategies: (a) ignoring SBB treatment; (b) excluding SBB users or (c) censoring them when treated; (d) inverse probability of treatment weighting after censoring (IPCW), including SBB treatment as (e) a binary or (f) a time‐dependent covariate; and (g) marginal structural modeling (MSM). Using DAGs, we demonstrated IPCW and MSM have the best properties and target a similar estimand. In the case study, compared to (a), approaches (b) and (e) provided predictions that were 1% and 2% higher on average. Performance (c‐statistic, Brier score, calibration slope) varied minimally between approaches. Our review of methods confirmed that ignoring treatment is theoretically inferior, but differences between the prediction models obtained using different methods can be modest in practice. Future simulation studies and applications are needed to assess the value of applying IPCW or MSM to adjust for treatments in different treatment and disease settings.</description><subject>Computer simulation</subject><subject>Cox regression</subject><subject>Graph theory</subject><subject>inverse probability weights</subject><subject>marginal structural model</subject><subject>Modelling</subject><subject>prediction</subject><subject>prognosis</subject><subject>Statistical analysis</subject><subject>Time dependence</subject><issn>0039-0402</issn><issn>1467-9574</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8Stxza6qeEkVLCjryLEnbaokLrbbqgskPoFv5EtIKGtmM7M4d3R1ELqkZES7uQlRtyPKqOJHaEBFJhOVSnGMBoRwlRBB2Ck6C2FFCJVKZAP0MTHGbdpYtQtcOo9j1cD355eFNbQW2oijBx2b_toEwLsltNjCFmq37iMar71btC7EyuDGWahx6V2DXRHAb3WsXKtrbHXUt3iCPWwr2GFX4gbi0tlwjk5KXQe4-NtD9HZ_N58-JrOXh6fpZJYYLglPipSnhVVsLEthxmAgI4wKygtCx8wKyzJFVUrKTGspDJFWaspSozsjigKVfIiuDn-7tu8bCDFfuY3vqoWcccbSMRUq66jrA2W8C8FDma991Wi_zynJe715rzf_1dvB9ADvqhr2_5D563zyfMj8ACpuf2Q</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Pajouheshnia, Romin</creator><creator>Schuster, Noah A.</creator><creator>Groenwold, Rolf H. H.</creator><creator>Rutten, Frans H.</creator><creator>Moons, Karel G. M.</creator><creator>Peelen, Linda M.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4208-3583</orcidid></search><sort><creationdate>202002</creationdate><title>Accounting for time‐dependent treatment use when developing a prognostic model from observational data: A review of methods</title><author>Pajouheshnia, Romin ; Schuster, Noah A. ; Groenwold, Rolf H. H. ; Rutten, Frans H. ; Moons, Karel G. M. ; Peelen, Linda M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3703-b535bd9287f4c8ece6021413b0182d4d2691950f6aa74c07d7a125ca11191e173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Cox regression</topic><topic>Graph theory</topic><topic>inverse probability weights</topic><topic>marginal structural model</topic><topic>Modelling</topic><topic>prediction</topic><topic>prognosis</topic><topic>Statistical analysis</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pajouheshnia, Romin</creatorcontrib><creatorcontrib>Schuster, Noah A.</creatorcontrib><creatorcontrib>Groenwold, Rolf H. H.</creatorcontrib><creatorcontrib>Rutten, Frans H.</creatorcontrib><creatorcontrib>Moons, Karel G. M.</creatorcontrib><creatorcontrib>Peelen, Linda M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistica Neerlandica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pajouheshnia, Romin</au><au>Schuster, Noah A.</au><au>Groenwold, Rolf H. H.</au><au>Rutten, Frans H.</au><au>Moons, Karel G. M.</au><au>Peelen, Linda M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accounting for time‐dependent treatment use when developing a prognostic model from observational data: A review of methods</atitle><jtitle>Statistica Neerlandica</jtitle><date>2020-02</date><risdate>2020</risdate><volume>74</volume><issue>1</issue><spage>38</spage><epage>51</epage><pages>38-51</pages><issn>0039-0402</issn><eissn>1467-9574</eissn><abstract>Failure to account for time‐dependent treatment use when developing a prognostic model can result in biased future predictions. We reviewed currently available methods to account for treatment use when developing a prognostic model. First, we defined the estimands targeted by each method and examined their mechanisms of action with directed acyclic graphs (DAGs). Next, methods were implemented in data from 1,906 patients; 325 received selective β‐blockers (SBBs) during follow‐up. We demonstrated seven Cox regression modeling strategies: (a) ignoring SBB treatment; (b) excluding SBB users or (c) censoring them when treated; (d) inverse probability of treatment weighting after censoring (IPCW), including SBB treatment as (e) a binary or (f) a time‐dependent covariate; and (g) marginal structural modeling (MSM). Using DAGs, we demonstrated IPCW and MSM have the best properties and target a similar estimand. In the case study, compared to (a), approaches (b) and (e) provided predictions that were 1% and 2% higher on average. Performance (c‐statistic, Brier score, calibration slope) varied minimally between approaches. Our review of methods confirmed that ignoring treatment is theoretically inferior, but differences between the prediction models obtained using different methods can be modest in practice. Future simulation studies and applications are needed to assess the value of applying IPCW or MSM to adjust for treatments in different treatment and disease settings.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/stan.12193</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4208-3583</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-0402
ispartof Statistica Neerlandica, 2020-02, Vol.74 (1), p.38-51
issn 0039-0402
1467-9574
language eng
recordid cdi_proquest_journals_2322581496
source EBSCOhost Business Source Ultimate; Wiley-Blackwell Read & Publish Collection
subjects Computer simulation
Cox regression
Graph theory
inverse probability weights
marginal structural model
Modelling
prediction
prognosis
Statistical analysis
Time dependence
title Accounting for time‐dependent treatment use when developing a prognostic model from observational data: A review of methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accounting%20for%20time%E2%80%90dependent%20treatment%20use%20when%20developing%20a%20prognostic%20model%20from%20observational%20data:%20A%20review%20of%20methods&rft.jtitle=Statistica%20Neerlandica&rft.au=Pajouheshnia,%20Romin&rft.date=2020-02&rft.volume=74&rft.issue=1&rft.spage=38&rft.epage=51&rft.pages=38-51&rft.issn=0039-0402&rft.eissn=1467-9574&rft_id=info:doi/10.1111/stan.12193&rft_dat=%3Cproquest_cross%3E2322581496%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3703-b535bd9287f4c8ece6021413b0182d4d2691950f6aa74c07d7a125ca11191e173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2322581496&rft_id=info:pmid/&rfr_iscdi=true