Loading…
Accounting for time‐dependent treatment use when developing a prognostic model from observational data: A review of methods
Failure to account for time‐dependent treatment use when developing a prognostic model can result in biased future predictions. We reviewed currently available methods to account for treatment use when developing a prognostic model. First, we defined the estimands targeted by each method and examine...
Saved in:
Published in: | Statistica Neerlandica 2020-02, Vol.74 (1), p.38-51 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3703-b535bd9287f4c8ece6021413b0182d4d2691950f6aa74c07d7a125ca11191e173 |
---|---|
cites | cdi_FETCH-LOGICAL-c3703-b535bd9287f4c8ece6021413b0182d4d2691950f6aa74c07d7a125ca11191e173 |
container_end_page | 51 |
container_issue | 1 |
container_start_page | 38 |
container_title | Statistica Neerlandica |
container_volume | 74 |
creator | Pajouheshnia, Romin Schuster, Noah A. Groenwold, Rolf H. H. Rutten, Frans H. Moons, Karel G. M. Peelen, Linda M. |
description | Failure to account for time‐dependent treatment use when developing a prognostic model can result in biased future predictions. We reviewed currently available methods to account for treatment use when developing a prognostic model. First, we defined the estimands targeted by each method and examined their mechanisms of action with directed acyclic graphs (DAGs). Next, methods were implemented in data from 1,906 patients; 325 received selective β‐blockers (SBBs) during follow‐up. We demonstrated seven Cox regression modeling strategies: (a) ignoring SBB treatment; (b) excluding SBB users or (c) censoring them when treated; (d) inverse probability of treatment weighting after censoring (IPCW), including SBB treatment as (e) a binary or (f) a time‐dependent covariate; and (g) marginal structural modeling (MSM). Using DAGs, we demonstrated IPCW and MSM have the best properties and target a similar estimand. In the case study, compared to (a), approaches (b) and (e) provided predictions that were 1% and 2% higher on average. Performance (c‐statistic, Brier score, calibration slope) varied minimally between approaches. Our review of methods confirmed that ignoring treatment is theoretically inferior, but differences between the prediction models obtained using different methods can be modest in practice. Future simulation studies and applications are needed to assess the value of applying IPCW or MSM to adjust for treatments in different treatment and disease settings. |
doi_str_mv | 10.1111/stan.12193 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322581496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322581496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3703-b535bd9287f4c8ece6021413b0182d4d2691950f6aa74c07d7a125ca11191e173</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8Stxza6qeEkVLCjryLEnbaokLrbbqgskPoFv5EtIKGtmM7M4d3R1ELqkZES7uQlRtyPKqOJHaEBFJhOVSnGMBoRwlRBB2Ck6C2FFCJVKZAP0MTHGbdpYtQtcOo9j1cD355eFNbQW2oijBx2b_toEwLsltNjCFmq37iMar71btC7EyuDGWahx6V2DXRHAb3WsXKtrbHXUt3iCPWwr2GFX4gbi0tlwjk5KXQe4-NtD9HZ_N58-JrOXh6fpZJYYLglPipSnhVVsLEthxmAgI4wKygtCx8wKyzJFVUrKTGspDJFWaspSozsjigKVfIiuDn-7tu8bCDFfuY3vqoWcccbSMRUq66jrA2W8C8FDma991Wi_zynJe715rzf_1dvB9ADvqhr2_5D563zyfMj8ACpuf2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322581496</pqid></control><display><type>article</type><title>Accounting for time‐dependent treatment use when developing a prognostic model from observational data: A review of methods</title><source>EBSCOhost Business Source Ultimate</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Pajouheshnia, Romin ; Schuster, Noah A. ; Groenwold, Rolf H. H. ; Rutten, Frans H. ; Moons, Karel G. M. ; Peelen, Linda M.</creator><creatorcontrib>Pajouheshnia, Romin ; Schuster, Noah A. ; Groenwold, Rolf H. H. ; Rutten, Frans H. ; Moons, Karel G. M. ; Peelen, Linda M.</creatorcontrib><description>Failure to account for time‐dependent treatment use when developing a prognostic model can result in biased future predictions. We reviewed currently available methods to account for treatment use when developing a prognostic model. First, we defined the estimands targeted by each method and examined their mechanisms of action with directed acyclic graphs (DAGs). Next, methods were implemented in data from 1,906 patients; 325 received selective β‐blockers (SBBs) during follow‐up. We demonstrated seven Cox regression modeling strategies: (a) ignoring SBB treatment; (b) excluding SBB users or (c) censoring them when treated; (d) inverse probability of treatment weighting after censoring (IPCW), including SBB treatment as (e) a binary or (f) a time‐dependent covariate; and (g) marginal structural modeling (MSM). Using DAGs, we demonstrated IPCW and MSM have the best properties and target a similar estimand. In the case study, compared to (a), approaches (b) and (e) provided predictions that were 1% and 2% higher on average. Performance (c‐statistic, Brier score, calibration slope) varied minimally between approaches. Our review of methods confirmed that ignoring treatment is theoretically inferior, but differences between the prediction models obtained using different methods can be modest in practice. Future simulation studies and applications are needed to assess the value of applying IPCW or MSM to adjust for treatments in different treatment and disease settings.</description><identifier>ISSN: 0039-0402</identifier><identifier>EISSN: 1467-9574</identifier><identifier>DOI: 10.1111/stan.12193</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Computer simulation ; Cox regression ; Graph theory ; inverse probability weights ; marginal structural model ; Modelling ; prediction ; prognosis ; Statistical analysis ; Time dependence</subject><ispartof>Statistica Neerlandica, 2020-02, Vol.74 (1), p.38-51</ispartof><rights>2019 The Authors. Published by John Wiley & Sons, Ltd. on behalf of VVS.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3703-b535bd9287f4c8ece6021413b0182d4d2691950f6aa74c07d7a125ca11191e173</citedby><cites>FETCH-LOGICAL-c3703-b535bd9287f4c8ece6021413b0182d4d2691950f6aa74c07d7a125ca11191e173</cites><orcidid>0000-0002-4208-3583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pajouheshnia, Romin</creatorcontrib><creatorcontrib>Schuster, Noah A.</creatorcontrib><creatorcontrib>Groenwold, Rolf H. H.</creatorcontrib><creatorcontrib>Rutten, Frans H.</creatorcontrib><creatorcontrib>Moons, Karel G. M.</creatorcontrib><creatorcontrib>Peelen, Linda M.</creatorcontrib><title>Accounting for time‐dependent treatment use when developing a prognostic model from observational data: A review of methods</title><title>Statistica Neerlandica</title><description>Failure to account for time‐dependent treatment use when developing a prognostic model can result in biased future predictions. We reviewed currently available methods to account for treatment use when developing a prognostic model. First, we defined the estimands targeted by each method and examined their mechanisms of action with directed acyclic graphs (DAGs). Next, methods were implemented in data from 1,906 patients; 325 received selective β‐blockers (SBBs) during follow‐up. We demonstrated seven Cox regression modeling strategies: (a) ignoring SBB treatment; (b) excluding SBB users or (c) censoring them when treated; (d) inverse probability of treatment weighting after censoring (IPCW), including SBB treatment as (e) a binary or (f) a time‐dependent covariate; and (g) marginal structural modeling (MSM). Using DAGs, we demonstrated IPCW and MSM have the best properties and target a similar estimand. In the case study, compared to (a), approaches (b) and (e) provided predictions that were 1% and 2% higher on average. Performance (c‐statistic, Brier score, calibration slope) varied minimally between approaches. Our review of methods confirmed that ignoring treatment is theoretically inferior, but differences between the prediction models obtained using different methods can be modest in practice. Future simulation studies and applications are needed to assess the value of applying IPCW or MSM to adjust for treatments in different treatment and disease settings.</description><subject>Computer simulation</subject><subject>Cox regression</subject><subject>Graph theory</subject><subject>inverse probability weights</subject><subject>marginal structural model</subject><subject>Modelling</subject><subject>prediction</subject><subject>prognosis</subject><subject>Statistical analysis</subject><subject>Time dependence</subject><issn>0039-0402</issn><issn>1467-9574</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8Stxza6qeEkVLCjryLEnbaokLrbbqgskPoFv5EtIKGtmM7M4d3R1ELqkZES7uQlRtyPKqOJHaEBFJhOVSnGMBoRwlRBB2Ck6C2FFCJVKZAP0MTHGbdpYtQtcOo9j1cD355eFNbQW2oijBx2b_toEwLsltNjCFmq37iMar71btC7EyuDGWahx6V2DXRHAb3WsXKtrbHXUt3iCPWwr2GFX4gbi0tlwjk5KXQe4-NtD9HZ_N58-JrOXh6fpZJYYLglPipSnhVVsLEthxmAgI4wKygtCx8wKyzJFVUrKTGspDJFWaspSozsjigKVfIiuDn-7tu8bCDFfuY3vqoWcccbSMRUq66jrA2W8C8FDma991Wi_zynJe715rzf_1dvB9ADvqhr2_5D563zyfMj8ACpuf2Q</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Pajouheshnia, Romin</creator><creator>Schuster, Noah A.</creator><creator>Groenwold, Rolf H. H.</creator><creator>Rutten, Frans H.</creator><creator>Moons, Karel G. M.</creator><creator>Peelen, Linda M.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4208-3583</orcidid></search><sort><creationdate>202002</creationdate><title>Accounting for time‐dependent treatment use when developing a prognostic model from observational data: A review of methods</title><author>Pajouheshnia, Romin ; Schuster, Noah A. ; Groenwold, Rolf H. H. ; Rutten, Frans H. ; Moons, Karel G. M. ; Peelen, Linda M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3703-b535bd9287f4c8ece6021413b0182d4d2691950f6aa74c07d7a125ca11191e173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Cox regression</topic><topic>Graph theory</topic><topic>inverse probability weights</topic><topic>marginal structural model</topic><topic>Modelling</topic><topic>prediction</topic><topic>prognosis</topic><topic>Statistical analysis</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pajouheshnia, Romin</creatorcontrib><creatorcontrib>Schuster, Noah A.</creatorcontrib><creatorcontrib>Groenwold, Rolf H. H.</creatorcontrib><creatorcontrib>Rutten, Frans H.</creatorcontrib><creatorcontrib>Moons, Karel G. M.</creatorcontrib><creatorcontrib>Peelen, Linda M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistica Neerlandica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pajouheshnia, Romin</au><au>Schuster, Noah A.</au><au>Groenwold, Rolf H. H.</au><au>Rutten, Frans H.</au><au>Moons, Karel G. M.</au><au>Peelen, Linda M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accounting for time‐dependent treatment use when developing a prognostic model from observational data: A review of methods</atitle><jtitle>Statistica Neerlandica</jtitle><date>2020-02</date><risdate>2020</risdate><volume>74</volume><issue>1</issue><spage>38</spage><epage>51</epage><pages>38-51</pages><issn>0039-0402</issn><eissn>1467-9574</eissn><abstract>Failure to account for time‐dependent treatment use when developing a prognostic model can result in biased future predictions. We reviewed currently available methods to account for treatment use when developing a prognostic model. First, we defined the estimands targeted by each method and examined their mechanisms of action with directed acyclic graphs (DAGs). Next, methods were implemented in data from 1,906 patients; 325 received selective β‐blockers (SBBs) during follow‐up. We demonstrated seven Cox regression modeling strategies: (a) ignoring SBB treatment; (b) excluding SBB users or (c) censoring them when treated; (d) inverse probability of treatment weighting after censoring (IPCW), including SBB treatment as (e) a binary or (f) a time‐dependent covariate; and (g) marginal structural modeling (MSM). Using DAGs, we demonstrated IPCW and MSM have the best properties and target a similar estimand. In the case study, compared to (a), approaches (b) and (e) provided predictions that were 1% and 2% higher on average. Performance (c‐statistic, Brier score, calibration slope) varied minimally between approaches. Our review of methods confirmed that ignoring treatment is theoretically inferior, but differences between the prediction models obtained using different methods can be modest in practice. Future simulation studies and applications are needed to assess the value of applying IPCW or MSM to adjust for treatments in different treatment and disease settings.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/stan.12193</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4208-3583</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-0402 |
ispartof | Statistica Neerlandica, 2020-02, Vol.74 (1), p.38-51 |
issn | 0039-0402 1467-9574 |
language | eng |
recordid | cdi_proquest_journals_2322581496 |
source | EBSCOhost Business Source Ultimate; Wiley-Blackwell Read & Publish Collection |
subjects | Computer simulation Cox regression Graph theory inverse probability weights marginal structural model Modelling prediction prognosis Statistical analysis Time dependence |
title | Accounting for time‐dependent treatment use when developing a prognostic model from observational data: A review of methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accounting%20for%20time%E2%80%90dependent%20treatment%20use%20when%20developing%20a%20prognostic%20model%20from%20observational%20data:%20A%20review%20of%20methods&rft.jtitle=Statistica%20Neerlandica&rft.au=Pajouheshnia,%20Romin&rft.date=2020-02&rft.volume=74&rft.issue=1&rft.spage=38&rft.epage=51&rft.pages=38-51&rft.issn=0039-0402&rft.eissn=1467-9574&rft_id=info:doi/10.1111/stan.12193&rft_dat=%3Cproquest_cross%3E2322581496%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3703-b535bd9287f4c8ece6021413b0182d4d2691950f6aa74c07d7a125ca11191e173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2322581496&rft_id=info:pmid/&rfr_iscdi=true |