Loading…

On the Synthesis of Morphology‐Controlled Transition Metal Dichalcogenides via Chemical Vapor Deposition for Electrochemical Hydrogen Generation

Shape‐engineered atomically thin transition metal dichalcogenide (TMD) crystals are highly intriguing systems with regard to both fundamental and applied science. Herein, a chemical vapor deposition‐assisted generalized synthesis strategy for the triangular‐ and dendritic‐shaped TMDs and their terna...

Full description

Saved in:
Bibliographic Details
Published in:Physica status solidi. PSS-RRL. Rapid research letters 2019-12, Vol.13 (12), p.n/a
Main Authors: Sharma, Rahul, Sahoo, Krishna Rani, Rastogi, Pankaj Kumar, Biroju, Ravi K., Theis, Wolfgang, Narayanan, Tharangattu N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4237-5f21d1fc17a78673689fb43e8c95357bf0b1f44fa5bc510452a77f5a0399736c3
cites cdi_FETCH-LOGICAL-c4237-5f21d1fc17a78673689fb43e8c95357bf0b1f44fa5bc510452a77f5a0399736c3
container_end_page n/a
container_issue 12
container_start_page
container_title Physica status solidi. PSS-RRL. Rapid research letters
container_volume 13
creator Sharma, Rahul
Sahoo, Krishna Rani
Rastogi, Pankaj Kumar
Biroju, Ravi K.
Theis, Wolfgang
Narayanan, Tharangattu N.
description Shape‐engineered atomically thin transition metal dichalcogenide (TMD) crystals are highly intriguing systems with regard to both fundamental and applied science. Herein, a chemical vapor deposition‐assisted generalized synthesis strategy for the triangular‐ and dendritic‐shaped TMDs and their ternary alloys is proposed, and the TMD structures' potential for electrocatalytic hydrogen evolution reaction (HER) applications is demonstrated. The alloy formation is confirmed via micro‐Raman and photoluminescence studies and further verified using transmission electron microscopy and X‐ray photoelectron spectroscopy. The HER activities of MoS2 and MoSe2 triangles are compared with those of their dendritic structures, and an enormous improvement in terms of overpotential and current density is observed for the dendritic structures. A further enhancement of the HER activity is observed in MoS2(1−x)Se2x triangular and dendritic structures, with dendritic MoS2(1−x)Se2x providing the best activity. The demonstrated nonequilibrium growth technique opens new avenues for the synthesis of morphology‐controlled, large area, complex, and atomically thin TMD structures, which can have unprecedented properties, such as the enormous catalytic activity, tunable luminescence, etc., as presented in this article. A generalized chemical vapor deposition (CVD)‐based synthesis strategy for morphology‐controlled transition metal dichalcogenides (TMDs) and their alloys, and the enhanced hydrogen evolution activities of dendritic TMD alloys: Optical images of dendritic 2H‐MoS2(1−x)Se2x structures are shown in the figure with their photoluminescence properties indicated by the red color. Augmented electrocatalytic hydrogen generation is also shown in the schematic.
doi_str_mv 10.1002/pssr.201900257
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2322654306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322654306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4237-5f21d1fc17a78673689fb43e8c95357bf0b1f44fa5bc510452a77f5a0399736c3</originalsourceid><addsrcrecordid>eNqFkM9OAjEQhzdGExG9em7iGezfLXs0gGACwQh63XRLCyXLdm0Xzd58BOMj-iR2A-LR08xkvm8m-UXRNYJdBCG-Lb13XQxREgbGT6IW6sW4E2MOT489o-fRhfcbCFnCKWlFX7MCVGsF5nURijceWA2m1pVrm9tV_f3x2bdF5WyeqyVYOFF4UxlbgKmqRA4GRq5FLu1KFWapPHgzAvTXamtkWL6I0jowUKU9ODqMw1zJcE7-QuN66RodjFShnGi4y-hMi9yrq0NtR8_3w0V_3JnMRg_9u0lHUkx4h2mMlkhLxAXvxZzEvURnlKieTBhhPNMwQ5pSLVgmGYKUYcG5ZgKSJAm0JO3oZn-3dPZ1p3yVbuzOFeFlignGMaMExoHq7inpbAhY6bR0ZitcnSKYNrmnTe7pMfcgJHvh3eSq_odOH-fzpz_3B8uXiyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322654306</pqid></control><display><type>article</type><title>On the Synthesis of Morphology‐Controlled Transition Metal Dichalcogenides via Chemical Vapor Deposition for Electrochemical Hydrogen Generation</title><source>Wiley</source><creator>Sharma, Rahul ; Sahoo, Krishna Rani ; Rastogi, Pankaj Kumar ; Biroju, Ravi K. ; Theis, Wolfgang ; Narayanan, Tharangattu N.</creator><creatorcontrib>Sharma, Rahul ; Sahoo, Krishna Rani ; Rastogi, Pankaj Kumar ; Biroju, Ravi K. ; Theis, Wolfgang ; Narayanan, Tharangattu N.</creatorcontrib><description>Shape‐engineered atomically thin transition metal dichalcogenide (TMD) crystals are highly intriguing systems with regard to both fundamental and applied science. Herein, a chemical vapor deposition‐assisted generalized synthesis strategy for the triangular‐ and dendritic‐shaped TMDs and their ternary alloys is proposed, and the TMD structures' potential for electrocatalytic hydrogen evolution reaction (HER) applications is demonstrated. The alloy formation is confirmed via micro‐Raman and photoluminescence studies and further verified using transmission electron microscopy and X‐ray photoelectron spectroscopy. The HER activities of MoS2 and MoSe2 triangles are compared with those of their dendritic structures, and an enormous improvement in terms of overpotential and current density is observed for the dendritic structures. A further enhancement of the HER activity is observed in MoS2(1−x)Se2x triangular and dendritic structures, with dendritic MoS2(1−x)Se2x providing the best activity. The demonstrated nonequilibrium growth technique opens new avenues for the synthesis of morphology‐controlled, large area, complex, and atomically thin TMD structures, which can have unprecedented properties, such as the enormous catalytic activity, tunable luminescence, etc., as presented in this article. A generalized chemical vapor deposition (CVD)‐based synthesis strategy for morphology‐controlled transition metal dichalcogenides (TMDs) and their alloys, and the enhanced hydrogen evolution activities of dendritic TMD alloys: Optical images of dendritic 2H‐MoS2(1−x)Se2x structures are shown in the figure with their photoluminescence properties indicated by the red color. Augmented electrocatalytic hydrogen generation is also shown in the schematic.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.201900257</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>atomically thin alloys ; Catalytic activity ; Chalcogenides ; Chemical synthesis ; Chemical vapor deposition ; Dendritic structure ; dendritic structures ; hydrogen evolution ; Hydrogen evolution reactions ; Hydrogen production ; Molybdenum disulfide ; Morphology ; Organic chemistry ; Photoelectrons ; Photoluminescence ; Ternary alloys ; Transition metal compounds ; transition metal dichalcogenides</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2019-12, Vol.13 (12), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4237-5f21d1fc17a78673689fb43e8c95357bf0b1f44fa5bc510452a77f5a0399736c3</citedby><cites>FETCH-LOGICAL-c4237-5f21d1fc17a78673689fb43e8c95357bf0b1f44fa5bc510452a77f5a0399736c3</cites><orcidid>0000-0002-5201-7539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sharma, Rahul</creatorcontrib><creatorcontrib>Sahoo, Krishna Rani</creatorcontrib><creatorcontrib>Rastogi, Pankaj Kumar</creatorcontrib><creatorcontrib>Biroju, Ravi K.</creatorcontrib><creatorcontrib>Theis, Wolfgang</creatorcontrib><creatorcontrib>Narayanan, Tharangattu N.</creatorcontrib><title>On the Synthesis of Morphology‐Controlled Transition Metal Dichalcogenides via Chemical Vapor Deposition for Electrochemical Hydrogen Generation</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>Shape‐engineered atomically thin transition metal dichalcogenide (TMD) crystals are highly intriguing systems with regard to both fundamental and applied science. Herein, a chemical vapor deposition‐assisted generalized synthesis strategy for the triangular‐ and dendritic‐shaped TMDs and their ternary alloys is proposed, and the TMD structures' potential for electrocatalytic hydrogen evolution reaction (HER) applications is demonstrated. The alloy formation is confirmed via micro‐Raman and photoluminescence studies and further verified using transmission electron microscopy and X‐ray photoelectron spectroscopy. The HER activities of MoS2 and MoSe2 triangles are compared with those of their dendritic structures, and an enormous improvement in terms of overpotential and current density is observed for the dendritic structures. A further enhancement of the HER activity is observed in MoS2(1−x)Se2x triangular and dendritic structures, with dendritic MoS2(1−x)Se2x providing the best activity. The demonstrated nonequilibrium growth technique opens new avenues for the synthesis of morphology‐controlled, large area, complex, and atomically thin TMD structures, which can have unprecedented properties, such as the enormous catalytic activity, tunable luminescence, etc., as presented in this article. A generalized chemical vapor deposition (CVD)‐based synthesis strategy for morphology‐controlled transition metal dichalcogenides (TMDs) and their alloys, and the enhanced hydrogen evolution activities of dendritic TMD alloys: Optical images of dendritic 2H‐MoS2(1−x)Se2x structures are shown in the figure with their photoluminescence properties indicated by the red color. Augmented electrocatalytic hydrogen generation is also shown in the schematic.</description><subject>atomically thin alloys</subject><subject>Catalytic activity</subject><subject>Chalcogenides</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>Dendritic structure</subject><subject>dendritic structures</subject><subject>hydrogen evolution</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Molybdenum disulfide</subject><subject>Morphology</subject><subject>Organic chemistry</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Ternary alloys</subject><subject>Transition metal compounds</subject><subject>transition metal dichalcogenides</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM9OAjEQhzdGExG9em7iGezfLXs0gGACwQh63XRLCyXLdm0Xzd58BOMj-iR2A-LR08xkvm8m-UXRNYJdBCG-Lb13XQxREgbGT6IW6sW4E2MOT489o-fRhfcbCFnCKWlFX7MCVGsF5nURijceWA2m1pVrm9tV_f3x2bdF5WyeqyVYOFF4UxlbgKmqRA4GRq5FLu1KFWapPHgzAvTXamtkWL6I0jowUKU9ODqMw1zJcE7-QuN66RodjFShnGi4y-hMi9yrq0NtR8_3w0V_3JnMRg_9u0lHUkx4h2mMlkhLxAXvxZzEvURnlKieTBhhPNMwQ5pSLVgmGYKUYcG5ZgKSJAm0JO3oZn-3dPZ1p3yVbuzOFeFlignGMaMExoHq7inpbAhY6bR0ZitcnSKYNrmnTe7pMfcgJHvh3eSq_odOH-fzpz_3B8uXiyY</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Sharma, Rahul</creator><creator>Sahoo, Krishna Rani</creator><creator>Rastogi, Pankaj Kumar</creator><creator>Biroju, Ravi K.</creator><creator>Theis, Wolfgang</creator><creator>Narayanan, Tharangattu N.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5201-7539</orcidid></search><sort><creationdate>201912</creationdate><title>On the Synthesis of Morphology‐Controlled Transition Metal Dichalcogenides via Chemical Vapor Deposition for Electrochemical Hydrogen Generation</title><author>Sharma, Rahul ; Sahoo, Krishna Rani ; Rastogi, Pankaj Kumar ; Biroju, Ravi K. ; Theis, Wolfgang ; Narayanan, Tharangattu N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4237-5f21d1fc17a78673689fb43e8c95357bf0b1f44fa5bc510452a77f5a0399736c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>atomically thin alloys</topic><topic>Catalytic activity</topic><topic>Chalcogenides</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>Dendritic structure</topic><topic>dendritic structures</topic><topic>hydrogen evolution</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Molybdenum disulfide</topic><topic>Morphology</topic><topic>Organic chemistry</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Ternary alloys</topic><topic>Transition metal compounds</topic><topic>transition metal dichalcogenides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Rahul</creatorcontrib><creatorcontrib>Sahoo, Krishna Rani</creatorcontrib><creatorcontrib>Rastogi, Pankaj Kumar</creatorcontrib><creatorcontrib>Biroju, Ravi K.</creatorcontrib><creatorcontrib>Theis, Wolfgang</creatorcontrib><creatorcontrib>Narayanan, Tharangattu N.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Rahul</au><au>Sahoo, Krishna Rani</au><au>Rastogi, Pankaj Kumar</au><au>Biroju, Ravi K.</au><au>Theis, Wolfgang</au><au>Narayanan, Tharangattu N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Synthesis of Morphology‐Controlled Transition Metal Dichalcogenides via Chemical Vapor Deposition for Electrochemical Hydrogen Generation</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2019-12</date><risdate>2019</risdate><volume>13</volume><issue>12</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>Shape‐engineered atomically thin transition metal dichalcogenide (TMD) crystals are highly intriguing systems with regard to both fundamental and applied science. Herein, a chemical vapor deposition‐assisted generalized synthesis strategy for the triangular‐ and dendritic‐shaped TMDs and their ternary alloys is proposed, and the TMD structures' potential for electrocatalytic hydrogen evolution reaction (HER) applications is demonstrated. The alloy formation is confirmed via micro‐Raman and photoluminescence studies and further verified using transmission electron microscopy and X‐ray photoelectron spectroscopy. The HER activities of MoS2 and MoSe2 triangles are compared with those of their dendritic structures, and an enormous improvement in terms of overpotential and current density is observed for the dendritic structures. A further enhancement of the HER activity is observed in MoS2(1−x)Se2x triangular and dendritic structures, with dendritic MoS2(1−x)Se2x providing the best activity. The demonstrated nonequilibrium growth technique opens new avenues for the synthesis of morphology‐controlled, large area, complex, and atomically thin TMD structures, which can have unprecedented properties, such as the enormous catalytic activity, tunable luminescence, etc., as presented in this article. A generalized chemical vapor deposition (CVD)‐based synthesis strategy for morphology‐controlled transition metal dichalcogenides (TMDs) and their alloys, and the enhanced hydrogen evolution activities of dendritic TMD alloys: Optical images of dendritic 2H‐MoS2(1−x)Se2x structures are shown in the figure with their photoluminescence properties indicated by the red color. Augmented electrocatalytic hydrogen generation is also shown in the schematic.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssr.201900257</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5201-7539</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-6254
ispartof Physica status solidi. PSS-RRL. Rapid research letters, 2019-12, Vol.13 (12), p.n/a
issn 1862-6254
1862-6270
language eng
recordid cdi_proquest_journals_2322654306
source Wiley
subjects atomically thin alloys
Catalytic activity
Chalcogenides
Chemical synthesis
Chemical vapor deposition
Dendritic structure
dendritic structures
hydrogen evolution
Hydrogen evolution reactions
Hydrogen production
Molybdenum disulfide
Morphology
Organic chemistry
Photoelectrons
Photoluminescence
Ternary alloys
Transition metal compounds
transition metal dichalcogenides
title On the Synthesis of Morphology‐Controlled Transition Metal Dichalcogenides via Chemical Vapor Deposition for Electrochemical Hydrogen Generation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Synthesis%20of%20Morphology%E2%80%90Controlled%20Transition%20Metal%20Dichalcogenides%20via%20Chemical%20Vapor%20Deposition%20for%20Electrochemical%20Hydrogen%20Generation&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Sharma,%20Rahul&rft.date=2019-12&rft.volume=13&rft.issue=12&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.201900257&rft_dat=%3Cproquest_cross%3E2322654306%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4237-5f21d1fc17a78673689fb43e8c95357bf0b1f44fa5bc510452a77f5a0399736c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2322654306&rft_id=info:pmid/&rfr_iscdi=true