Loading…

Chebyshev Polynomial Expansion of Two-Dimensional Landau-Fermi liquid Parameters

We study the intrinsic effects of dimensional reduction on the transport equation of a perfectly two-dimensional Landau-Fermi liquid. By employing the orthogonality condition on the 2D analog of the Fourier-Legendre expansion, we find that the equilibrium and non-equilibrium properties of the fermio...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-12
Main Authors: Heath, Joshuah T, Gochan, Matthew P, Bedell, Kevin S
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Heath, Joshuah T
Gochan, Matthew P
Bedell, Kevin S
description We study the intrinsic effects of dimensional reduction on the transport equation of a perfectly two-dimensional Landau-Fermi liquid. By employing the orthogonality condition on the 2D analog of the Fourier-Legendre expansion, we find that the equilibrium and non-equilibrium properties of the fermionic system differ from its three-dimensional counterpart, with the latter changing drastically. Specifically, the modified Landau-Silin kinetic equation is heavily dependent on the solution of a non-trivial contour integral specific to the 2D liquid. We find the solution to this integral and its generalizations, effectively reducing the problem of solving for the collective excitations of a collisonless two-dimensional Landau-Fermi liquid to solving for the roots of some high-degree polynomial. This analysis ultimately lays the mathematical foundation for the exploration of atypical behavior in the non-equilibrium properties of two-dimensional fermionic liquids in the context of the Landau quasiparticle paradigm.
doi_str_mv 10.48550/arxiv.1912.03427
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2323280352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323280352</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-f96839e7a0cf0dc7dcd03031fbdd81f00d31520c8d3ebc4f53579429c2befc453</originalsourceid><addsrcrecordid>eNotjk1Lw0AURQdBsNT-AHcB14lv3ss0yVJiq0LALLIvk_mgU5JMm2lq--8NKndx4Vw4XMaeOCRpLgS8yPHqLgkvOCZAKWZ3bIFEPM5TxAe2CuEAALjOUAhasLrcm_YW9uYS1b67Db53sos216McgvND5G3UfPv4zfXmF8xjJQctp3hrxt5FnTtNTke1HGVvzmYMj-zeyi6Y1X8vWbPdNOVHXH29f5avVSwFYmyLdU6FySQoC1plWmkgIG5brXNuATRxgaByTaZVqRUksiLFQmFrrEoFLdnzn_Y4-tNkwnl38NM43ws7pDk5kED6AWWvUTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323280352</pqid></control><display><type>article</type><title>Chebyshev Polynomial Expansion of Two-Dimensional Landau-Fermi liquid Parameters</title><source>Publicly Available Content (ProQuest)</source><creator>Heath, Joshuah T ; Gochan, Matthew P ; Bedell, Kevin S</creator><creatorcontrib>Heath, Joshuah T ; Gochan, Matthew P ; Bedell, Kevin S</creatorcontrib><description>We study the intrinsic effects of dimensional reduction on the transport equation of a perfectly two-dimensional Landau-Fermi liquid. By employing the orthogonality condition on the 2D analog of the Fourier-Legendre expansion, we find that the equilibrium and non-equilibrium properties of the fermionic system differ from its three-dimensional counterpart, with the latter changing drastically. Specifically, the modified Landau-Silin kinetic equation is heavily dependent on the solution of a non-trivial contour integral specific to the 2D liquid. We find the solution to this integral and its generalizations, effectively reducing the problem of solving for the collective excitations of a collisonless two-dimensional Landau-Fermi liquid to solving for the roots of some high-degree polynomial. This analysis ultimately lays the mathematical foundation for the exploration of atypical behavior in the non-equilibrium properties of two-dimensional fermionic liquids in the context of the Landau quasiparticle paradigm.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1912.03427</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chebyshev approximation ; Equilibrium ; Fermi liquids ; Integrals ; Kinetic equations ; Mathematical analysis ; Orthogonality ; Polynomials ; Transport equations</subject><ispartof>arXiv.org, 2019-12</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2323280352?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Heath, Joshuah T</creatorcontrib><creatorcontrib>Gochan, Matthew P</creatorcontrib><creatorcontrib>Bedell, Kevin S</creatorcontrib><title>Chebyshev Polynomial Expansion of Two-Dimensional Landau-Fermi liquid Parameters</title><title>arXiv.org</title><description>We study the intrinsic effects of dimensional reduction on the transport equation of a perfectly two-dimensional Landau-Fermi liquid. By employing the orthogonality condition on the 2D analog of the Fourier-Legendre expansion, we find that the equilibrium and non-equilibrium properties of the fermionic system differ from its three-dimensional counterpart, with the latter changing drastically. Specifically, the modified Landau-Silin kinetic equation is heavily dependent on the solution of a non-trivial contour integral specific to the 2D liquid. We find the solution to this integral and its generalizations, effectively reducing the problem of solving for the collective excitations of a collisonless two-dimensional Landau-Fermi liquid to solving for the roots of some high-degree polynomial. This analysis ultimately lays the mathematical foundation for the exploration of atypical behavior in the non-equilibrium properties of two-dimensional fermionic liquids in the context of the Landau quasiparticle paradigm.</description><subject>Chebyshev approximation</subject><subject>Equilibrium</subject><subject>Fermi liquids</subject><subject>Integrals</subject><subject>Kinetic equations</subject><subject>Mathematical analysis</subject><subject>Orthogonality</subject><subject>Polynomials</subject><subject>Transport equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1Lw0AURQdBsNT-AHcB14lv3ss0yVJiq0LALLIvk_mgU5JMm2lq--8NKndx4Vw4XMaeOCRpLgS8yPHqLgkvOCZAKWZ3bIFEPM5TxAe2CuEAALjOUAhasLrcm_YW9uYS1b67Db53sos216McgvND5G3UfPv4zfXmF8xjJQctp3hrxt5FnTtNTke1HGVvzmYMj-zeyi6Y1X8vWbPdNOVHXH29f5avVSwFYmyLdU6FySQoC1plWmkgIG5brXNuATRxgaByTaZVqRUksiLFQmFrrEoFLdnzn_Y4-tNkwnl38NM43ws7pDk5kED6AWWvUTs</recordid><startdate>20191207</startdate><enddate>20191207</enddate><creator>Heath, Joshuah T</creator><creator>Gochan, Matthew P</creator><creator>Bedell, Kevin S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191207</creationdate><title>Chebyshev Polynomial Expansion of Two-Dimensional Landau-Fermi liquid Parameters</title><author>Heath, Joshuah T ; Gochan, Matthew P ; Bedell, Kevin S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-f96839e7a0cf0dc7dcd03031fbdd81f00d31520c8d3ebc4f53579429c2befc453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chebyshev approximation</topic><topic>Equilibrium</topic><topic>Fermi liquids</topic><topic>Integrals</topic><topic>Kinetic equations</topic><topic>Mathematical analysis</topic><topic>Orthogonality</topic><topic>Polynomials</topic><topic>Transport equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Heath, Joshuah T</creatorcontrib><creatorcontrib>Gochan, Matthew P</creatorcontrib><creatorcontrib>Bedell, Kevin S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heath, Joshuah T</au><au>Gochan, Matthew P</au><au>Bedell, Kevin S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chebyshev Polynomial Expansion of Two-Dimensional Landau-Fermi liquid Parameters</atitle><jtitle>arXiv.org</jtitle><date>2019-12-07</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We study the intrinsic effects of dimensional reduction on the transport equation of a perfectly two-dimensional Landau-Fermi liquid. By employing the orthogonality condition on the 2D analog of the Fourier-Legendre expansion, we find that the equilibrium and non-equilibrium properties of the fermionic system differ from its three-dimensional counterpart, with the latter changing drastically. Specifically, the modified Landau-Silin kinetic equation is heavily dependent on the solution of a non-trivial contour integral specific to the 2D liquid. We find the solution to this integral and its generalizations, effectively reducing the problem of solving for the collective excitations of a collisonless two-dimensional Landau-Fermi liquid to solving for the roots of some high-degree polynomial. This analysis ultimately lays the mathematical foundation for the exploration of atypical behavior in the non-equilibrium properties of two-dimensional fermionic liquids in the context of the Landau quasiparticle paradigm.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1912.03427</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2323280352
source Publicly Available Content (ProQuest)
subjects Chebyshev approximation
Equilibrium
Fermi liquids
Integrals
Kinetic equations
Mathematical analysis
Orthogonality
Polynomials
Transport equations
title Chebyshev Polynomial Expansion of Two-Dimensional Landau-Fermi liquid Parameters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chebyshev%20Polynomial%20Expansion%20of%20Two-Dimensional%20Landau-Fermi%20liquid%20Parameters&rft.jtitle=arXiv.org&rft.au=Heath,%20Joshuah%20T&rft.date=2019-12-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1912.03427&rft_dat=%3Cproquest%3E2323280352%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-f96839e7a0cf0dc7dcd03031fbdd81f00d31520c8d3ebc4f53579429c2befc453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2323280352&rft_id=info:pmid/&rfr_iscdi=true