Loading…

Plant availability of magnesium and phosphorus from struvite with concurrent nitrification inhibitor application

Struvite (MgNH4PO4.6H2O) and nitrification inhibitors are applied to soils to, respectively, provide nutrients and reduce nitrogen (N) loss. Given its low N composition (5.7%) relative to that of phosphorus (P, 12.6%) and magnesium (Mg, 9.9%), struvite could be added to soil concurrently with N fert...

Full description

Saved in:
Bibliographic Details
Published in:Soil use and management 2019-12, Vol.35 (4), p.675-682
Main Authors: Watson, Conor, Clemens, Joachim, Wichern, Florian, Nicholson, Fiona
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Struvite (MgNH4PO4.6H2O) and nitrification inhibitors are applied to soils to, respectively, provide nutrients and reduce nitrogen (N) loss. Given its low N composition (5.7%) relative to that of phosphorus (P, 12.6%) and magnesium (Mg, 9.9%), struvite could be added to soil concurrently with N fertilizers as a source of P and Mg. Nutrient release from struvite could be impacted if nitrification of its ammonium component is reduced by a nitrification inhibitor. Accordingly, a pot trial gauged whether struvite‐fertilized ryegrass had comparable Mg or P uptake and shoot yields with treatments receiving conventional Mg and P fertilizers. Struvite precipitated from milk industry wastewater, or conventional fertilizers, were added to a soil–sand mixture of low fertility. The inhibitor dicyandiamide (DCD) was added to assess its effect on P uptake by ryegrass. Relative to Epsom salt, struvite led to increased Mg uptake without significantly affecting shoot biomass, indicating luxury consumption. Regarding shoot yield and P uptake, struvite was as effective as triple super phosphate. DCD significantly reduced P uptake in the first harvest; the inhibited nitrification of the ammonium is surmised to have diminished struvite dissolution. In later harvests, DCD led to a trend (albeit not statistically significant) of increased biomass; this N‐rich (66% N) compound was probably biodegraded and utilized as an N source. The impact of DCD on P uptake in this experiment was short‐lived. Nevertheless, DCD degradation occurs less rapidly in field conditions, potentially affecting early P supply which is vital for optimum yield.
ISSN:0266-0032
1475-2743
DOI:10.1111/sum.12527