Loading…
Interaction between DNA polymerase [lambda] and RPA during translesion synthesis
Replication of damaged DNA (translesion synthesis, TLS) is realized by specialized DNA polymerases. Additional protein factors such as replication protein A (RPA) play important roles in this process. However, details of the interaction are unknown. Here we analyzed the influence of the hRPA and its...
Saved in:
Published in: | Biochemistry (Moscow) 2008-09, Vol.73 (9), p.1042 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Replication of damaged DNA (translesion synthesis, TLS) is realized by specialized DNA polymerases. Additional protein factors such as replication protein A (RPA) play important roles in this process. However, details of the interaction are unknown. Here we analyzed the influence of the hRPA and its mutant hABCD lacking domains responsible for protein-protein interactions on ability of DNA polymerase λ to catalyze TLS. The primer-template structures containing varying parts of extended strand (16 and 37 nt) were used as model systems imitating DNA intermediate of first stage of TLS. The 8-oxoguanine disposed in +1 position of the template strand in relation to 3'-end of primer was exploited as damage. It was shown that RPA stimulated TLS DNA synthesis catalyzed by DNA polymerase λ in its globular but not in extended conformation. Moreover, this effect is dependent on the presence of p70N and p32C domains in RPA molecule. (PUBLICATION ABSTRACT) |
---|---|
ISSN: | 0006-2979 1608-3040 |
DOI: | 10.1134/S0006297908090125 |