Loading…

Byzantine Resilient Non-Convex SVRG with Distributed Batch Gradient Computations

In this work, we consider the distributed stochastic optimization problem of minimizing a non-convex function \(f(x) = \mathbb{E}_{\xi \sim \mathcal{D}} f(x; \xi)\) in an adversarial setting, where the individual functions \(f(x; \xi)\) can also be potentially non-convex. We assume that at most \(\a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-12
Main Authors: Khanduri, Prashant, Bulusu, Saikiran, Sharma, Pranay, Varshney, Pramod K
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Khanduri, Prashant
Bulusu, Saikiran
Sharma, Pranay
Varshney, Pramod K
description In this work, we consider the distributed stochastic optimization problem of minimizing a non-convex function \(f(x) = \mathbb{E}_{\xi \sim \mathcal{D}} f(x; \xi)\) in an adversarial setting, where the individual functions \(f(x; \xi)\) can also be potentially non-convex. We assume that at most \(\alpha\)-fraction of a total of \(K\) nodes can be Byzantines. We propose a robust stochastic variance-reduced gradient (SVRG) like algorithm for the problem, where the batch gradients are computed at the worker nodes (WNs) and the stochastic gradients are computed at the server node (SN). For the non-convex optimization problem, we show that we need \(\tilde{O}\left( \frac{1}{\epsilon^{5/3} K^{2/3}} + \frac{\alpha^{4/3}}{\epsilon^{5/3}} \right)\) gradient computations on average at each node (SN and WNs) to reach an \(\epsilon\)-stationary point. The proposed algorithm guarantees convergence via the design of a novel Byzantine filtering rule which is independent of the problem dimension. Importantly, we capture the effect of the fraction of Byzantine nodes \(\alpha\) present in the network on the convergence performance of the algorithm.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2324512584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2324512584</sourcerecordid><originalsourceid>FETCH-proquest_journals_23245125843</originalsourceid><addsrcrecordid>eNqNyk8LgjAYgPERBEn5HQadBX3nyrNWdoqw6CorF05ss-21f5--iD5Ap-fw_AbEA8aiIIkBRsR3rgnDEGZz4Jx5ZJs-X0Kj0pIW0qlWSY10Y3SQGX2TD7o7FDm9K6zpQjm06tijrGgq8FTT3Irq6zNz6XoUqIx2EzI8i9ZJ_9cxma6W-2wddNZce-mwbExv9WeVwCDmEfAkZv-pN1KnPuI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2324512584</pqid></control><display><type>article</type><title>Byzantine Resilient Non-Convex SVRG with Distributed Batch Gradient Computations</title><source>Publicly Available Content Database</source><creator>Khanduri, Prashant ; Bulusu, Saikiran ; Sharma, Pranay ; Varshney, Pramod K</creator><creatorcontrib>Khanduri, Prashant ; Bulusu, Saikiran ; Sharma, Pranay ; Varshney, Pramod K</creatorcontrib><description>In this work, we consider the distributed stochastic optimization problem of minimizing a non-convex function \(f(x) = \mathbb{E}_{\xi \sim \mathcal{D}} f(x; \xi)\) in an adversarial setting, where the individual functions \(f(x; \xi)\) can also be potentially non-convex. We assume that at most \(\alpha\)-fraction of a total of \(K\) nodes can be Byzantines. We propose a robust stochastic variance-reduced gradient (SVRG) like algorithm for the problem, where the batch gradients are computed at the worker nodes (WNs) and the stochastic gradients are computed at the server node (SN). For the non-convex optimization problem, we show that we need \(\tilde{O}\left( \frac{1}{\epsilon^{5/3} K^{2/3}} + \frac{\alpha^{4/3}}{\epsilon^{5/3}} \right)\) gradient computations on average at each node (SN and WNs) to reach an \(\epsilon\)-stationary point. The proposed algorithm guarantees convergence via the design of a novel Byzantine filtering rule which is independent of the problem dimension. Importantly, we capture the effect of the fraction of Byzantine nodes \(\alpha\) present in the network on the convergence performance of the algorithm.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computational geometry ; Convergence ; Convexity ; Nodes ; Optimization</subject><ispartof>arXiv.org, 2019-12</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2324512584?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Khanduri, Prashant</creatorcontrib><creatorcontrib>Bulusu, Saikiran</creatorcontrib><creatorcontrib>Sharma, Pranay</creatorcontrib><creatorcontrib>Varshney, Pramod K</creatorcontrib><title>Byzantine Resilient Non-Convex SVRG with Distributed Batch Gradient Computations</title><title>arXiv.org</title><description>In this work, we consider the distributed stochastic optimization problem of minimizing a non-convex function \(f(x) = \mathbb{E}_{\xi \sim \mathcal{D}} f(x; \xi)\) in an adversarial setting, where the individual functions \(f(x; \xi)\) can also be potentially non-convex. We assume that at most \(\alpha\)-fraction of a total of \(K\) nodes can be Byzantines. We propose a robust stochastic variance-reduced gradient (SVRG) like algorithm for the problem, where the batch gradients are computed at the worker nodes (WNs) and the stochastic gradients are computed at the server node (SN). For the non-convex optimization problem, we show that we need \(\tilde{O}\left( \frac{1}{\epsilon^{5/3} K^{2/3}} + \frac{\alpha^{4/3}}{\epsilon^{5/3}} \right)\) gradient computations on average at each node (SN and WNs) to reach an \(\epsilon\)-stationary point. The proposed algorithm guarantees convergence via the design of a novel Byzantine filtering rule which is independent of the problem dimension. Importantly, we capture the effect of the fraction of Byzantine nodes \(\alpha\) present in the network on the convergence performance of the algorithm.</description><subject>Algorithms</subject><subject>Computational geometry</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Nodes</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyk8LgjAYgPERBEn5HQadBX3nyrNWdoqw6CorF05ss-21f5--iD5Ap-fw_AbEA8aiIIkBRsR3rgnDEGZz4Jx5ZJs-X0Kj0pIW0qlWSY10Y3SQGX2TD7o7FDm9K6zpQjm06tijrGgq8FTT3Irq6zNz6XoUqIx2EzI8i9ZJ_9cxma6W-2wddNZce-mwbExv9WeVwCDmEfAkZv-pN1KnPuI</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Khanduri, Prashant</creator><creator>Bulusu, Saikiran</creator><creator>Sharma, Pranay</creator><creator>Varshney, Pramod K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191210</creationdate><title>Byzantine Resilient Non-Convex SVRG with Distributed Batch Gradient Computations</title><author>Khanduri, Prashant ; Bulusu, Saikiran ; Sharma, Pranay ; Varshney, Pramod K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23245125843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computational geometry</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Nodes</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Khanduri, Prashant</creatorcontrib><creatorcontrib>Bulusu, Saikiran</creatorcontrib><creatorcontrib>Sharma, Pranay</creatorcontrib><creatorcontrib>Varshney, Pramod K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanduri, Prashant</au><au>Bulusu, Saikiran</au><au>Sharma, Pranay</au><au>Varshney, Pramod K</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Byzantine Resilient Non-Convex SVRG with Distributed Batch Gradient Computations</atitle><jtitle>arXiv.org</jtitle><date>2019-12-10</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>In this work, we consider the distributed stochastic optimization problem of minimizing a non-convex function \(f(x) = \mathbb{E}_{\xi \sim \mathcal{D}} f(x; \xi)\) in an adversarial setting, where the individual functions \(f(x; \xi)\) can also be potentially non-convex. We assume that at most \(\alpha\)-fraction of a total of \(K\) nodes can be Byzantines. We propose a robust stochastic variance-reduced gradient (SVRG) like algorithm for the problem, where the batch gradients are computed at the worker nodes (WNs) and the stochastic gradients are computed at the server node (SN). For the non-convex optimization problem, we show that we need \(\tilde{O}\left( \frac{1}{\epsilon^{5/3} K^{2/3}} + \frac{\alpha^{4/3}}{\epsilon^{5/3}} \right)\) gradient computations on average at each node (SN and WNs) to reach an \(\epsilon\)-stationary point. The proposed algorithm guarantees convergence via the design of a novel Byzantine filtering rule which is independent of the problem dimension. Importantly, we capture the effect of the fraction of Byzantine nodes \(\alpha\) present in the network on the convergence performance of the algorithm.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2324512584
source Publicly Available Content Database
subjects Algorithms
Computational geometry
Convergence
Convexity
Nodes
Optimization
title Byzantine Resilient Non-Convex SVRG with Distributed Batch Gradient Computations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Byzantine%20Resilient%20Non-Convex%20SVRG%20with%20Distributed%20Batch%20Gradient%20Computations&rft.jtitle=arXiv.org&rft.au=Khanduri,%20Prashant&rft.date=2019-12-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2324512584%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23245125843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2324512584&rft_id=info:pmid/&rfr_iscdi=true