Loading…
Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments
Biodiversity in freshwater habitats is decreasing faster than in any other type of environment, mostly as a result of human activities. Monitoring these losses can help guide mitigation efforts. In most studies, sampling strategies predominantly rely on collecting animal and vegetal specimens. Altho...
Saved in:
Published in: | Freshwater biology 2020-01, Vol.65 (1), p.7-19 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biodiversity in freshwater habitats is decreasing faster than in any other type of environment, mostly as a result of human activities. Monitoring these losses can help guide mitigation efforts. In most studies, sampling strategies predominantly rely on collecting animal and vegetal specimens. Although these techniques produce valuable data, they are invasive, time‐consuming and typically permit only limited spatial and temporal replication. There is need for the development of complementary methods.
As observed in other ecosystems, freshwater environments host animals that emit sounds, either to communicate or as a by‐product of their activity. The main freshwater soniferous groups are amphibians, fish, and macroinvertebrates (mainly Coleoptera and Hemiptera, but also some Decapoda, Odonata, and Trichoptera). Biophysical processes such as flow or sediment transport also produce sounds, as well as human activities within aquatic ecosystems.
Such animals and processes can be recorded, remotely and autonomously, and provide information on local diversity and ecosystem health. Passive acoustic monitoring (
PAM
) is an emerging method already deployed in terrestrial environments that uses sounds to survey environments. Key advantages of
PAM
are its non‐invasive nature, as well as its ability to record autonomously and over long timescales. All these research topics are the main aims of ecoacoustics, a new scientific discipline investigating the ecological role of sounds.
In this paper, we review the sources of sounds present in freshwater environments. We then underline areas of research in which
PAM
may be helpful emphasising the role of
PAM
for the development of ecoacoustics. Finally, we present methods used to record and analyse sounds in those environments.
Passive acoustics represents a potentially revolutionary development in freshwater ecology, enabling continuous monitoring of dynamic bio‐physical processes to inform conservation practitioners and managers. |
---|---|
ISSN: | 0046-5070 1365-2427 |
DOI: | 10.1111/fwb.13356 |