Loading…
Deep motion estimation for parallel inter-frame prediction in video compression
Standard video codecs rely on optical flow to guide inter-frame prediction: pixels from reference frames are moved via motion vectors to predict target video frames. We propose to learn binary motion codes that are encoded based on an input video sequence. These codes are not limited to 2D translati...
Saved in:
Published in: | arXiv.org 2019-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nortje, André Engelbrecht, Herman A Kamper, Herman |
description | Standard video codecs rely on optical flow to guide inter-frame prediction: pixels from reference frames are moved via motion vectors to predict target video frames. We propose to learn binary motion codes that are encoded based on an input video sequence. These codes are not limited to 2D translations, but can capture complex motion (warping, rotation and occlusion). Our motion codes are learned as part of a single neural network which also learns to compress and decode them. This approach supports parallel video frame decoding instead of the sequential motion estimation and compensation of flow-based methods. We also introduce 3D dynamic bit assignment to adapt to object displacements caused by motion, yielding additional bit savings. By replacing the optical flow-based block-motion algorithms found in an existing video codec with our learned inter-frame prediction model, our approach outperforms the standard H.264 and H.265 video codecs across at low bitrates. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2325124612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325124612</sourcerecordid><originalsourceid>FETCH-proquest_journals_23251246123</originalsourceid><addsrcrecordid>eNqNjc0KgkAUhYcgSMp3uNBa0Dtq7fuhXZv2MugVRuavO9rzN0gP0OocvvPB2YgMpayKc424E3mMU1mW2J6waWQmnleiANbP2jugOGur1jp6hqBYGUMGtJuJi5GVJQhMg-5XRzv46IE89N4mHGOCB7EdlYmU_3Ivjvfb6_IoAvv3kg66yS_s0tShxKbCuq1Q_md9AXKYPzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325124612</pqid></control><display><type>article</type><title>Deep motion estimation for parallel inter-frame prediction in video compression</title><source>Publicly Available Content (ProQuest)</source><creator>Nortje, André ; Engelbrecht, Herman A ; Kamper, Herman</creator><creatorcontrib>Nortje, André ; Engelbrecht, Herman A ; Kamper, Herman</creatorcontrib><description>Standard video codecs rely on optical flow to guide inter-frame prediction: pixels from reference frames are moved via motion vectors to predict target video frames. We propose to learn binary motion codes that are encoded based on an input video sequence. These codes are not limited to 2D translations, but can capture complex motion (warping, rotation and occlusion). Our motion codes are learned as part of a single neural network which also learns to compress and decode them. This approach supports parallel video frame decoding instead of the sequential motion estimation and compensation of flow-based methods. We also introduce 3D dynamic bit assignment to adapt to object displacements caused by motion, yielding additional bit savings. By replacing the optical flow-based block-motion algorithms found in an existing video codec with our learned inter-frame prediction model, our approach outperforms the standard H.264 and H.265 video codecs across at low bitrates.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Binary codes ; Codec ; Decoding ; Motion simulation ; Neural networks ; Occlusion ; Optical flow (image analysis) ; Translations ; Video compression</subject><ispartof>arXiv.org, 2019-12</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2325124612?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Nortje, André</creatorcontrib><creatorcontrib>Engelbrecht, Herman A</creatorcontrib><creatorcontrib>Kamper, Herman</creatorcontrib><title>Deep motion estimation for parallel inter-frame prediction in video compression</title><title>arXiv.org</title><description>Standard video codecs rely on optical flow to guide inter-frame prediction: pixels from reference frames are moved via motion vectors to predict target video frames. We propose to learn binary motion codes that are encoded based on an input video sequence. These codes are not limited to 2D translations, but can capture complex motion (warping, rotation and occlusion). Our motion codes are learned as part of a single neural network which also learns to compress and decode them. This approach supports parallel video frame decoding instead of the sequential motion estimation and compensation of flow-based methods. We also introduce 3D dynamic bit assignment to adapt to object displacements caused by motion, yielding additional bit savings. By replacing the optical flow-based block-motion algorithms found in an existing video codec with our learned inter-frame prediction model, our approach outperforms the standard H.264 and H.265 video codecs across at low bitrates.</description><subject>Algorithms</subject><subject>Binary codes</subject><subject>Codec</subject><subject>Decoding</subject><subject>Motion simulation</subject><subject>Neural networks</subject><subject>Occlusion</subject><subject>Optical flow (image analysis)</subject><subject>Translations</subject><subject>Video compression</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjc0KgkAUhYcgSMp3uNBa0Dtq7fuhXZv2MugVRuavO9rzN0gP0OocvvPB2YgMpayKc424E3mMU1mW2J6waWQmnleiANbP2jugOGur1jp6hqBYGUMGtJuJi5GVJQhMg-5XRzv46IE89N4mHGOCB7EdlYmU_3Ivjvfb6_IoAvv3kg66yS_s0tShxKbCuq1Q_md9AXKYPzw</recordid><startdate>20191211</startdate><enddate>20191211</enddate><creator>Nortje, André</creator><creator>Engelbrecht, Herman A</creator><creator>Kamper, Herman</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191211</creationdate><title>Deep motion estimation for parallel inter-frame prediction in video compression</title><author>Nortje, André ; Engelbrecht, Herman A ; Kamper, Herman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23251246123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Binary codes</topic><topic>Codec</topic><topic>Decoding</topic><topic>Motion simulation</topic><topic>Neural networks</topic><topic>Occlusion</topic><topic>Optical flow (image analysis)</topic><topic>Translations</topic><topic>Video compression</topic><toplevel>online_resources</toplevel><creatorcontrib>Nortje, André</creatorcontrib><creatorcontrib>Engelbrecht, Herman A</creatorcontrib><creatorcontrib>Kamper, Herman</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nortje, André</au><au>Engelbrecht, Herman A</au><au>Kamper, Herman</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep motion estimation for parallel inter-frame prediction in video compression</atitle><jtitle>arXiv.org</jtitle><date>2019-12-11</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Standard video codecs rely on optical flow to guide inter-frame prediction: pixels from reference frames are moved via motion vectors to predict target video frames. We propose to learn binary motion codes that are encoded based on an input video sequence. These codes are not limited to 2D translations, but can capture complex motion (warping, rotation and occlusion). Our motion codes are learned as part of a single neural network which also learns to compress and decode them. This approach supports parallel video frame decoding instead of the sequential motion estimation and compensation of flow-based methods. We also introduce 3D dynamic bit assignment to adapt to object displacements caused by motion, yielding additional bit savings. By replacing the optical flow-based block-motion algorithms found in an existing video codec with our learned inter-frame prediction model, our approach outperforms the standard H.264 and H.265 video codecs across at low bitrates.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2325124612 |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Binary codes Codec Decoding Motion simulation Neural networks Occlusion Optical flow (image analysis) Translations Video compression |
title | Deep motion estimation for parallel inter-frame prediction in video compression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep%20motion%20estimation%20for%20parallel%20inter-frame%20prediction%20in%20video%20compression&rft.jtitle=arXiv.org&rft.au=Nortje,%20Andr%C3%A9&rft.date=2019-12-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2325124612%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23251246123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2325124612&rft_id=info:pmid/&rfr_iscdi=true |