Loading…
Distributed Robust Beamforming Based on Low-Rank and Cross-Correlation Techniques: Design and Analysis
In this work, we present a novel robust distributed beamforming (RDB) approach based on low-rank and cross-correlation techniques. The proposed RDB approach mitigates the effects of channel errors in wireless networks equipped with relays based on the exploitation of the cross-correlation between th...
Saved in:
Published in: | IEEE transactions on signal processing 2019-12, Vol.67 (24), p.6411-6423 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we present a novel robust distributed beamforming (RDB) approach based on low-rank and cross-correlation techniques. The proposed RDB approach mitigates the effects of channel errors in wireless networks equipped with relays based on the exploitation of the cross-correlation between the received data from the relays at the destination and the system output and low-rank techniques. The relay nodes are equipped with an amplify-and-forward (AF) protocol and the channel errors are modeled using an additive matrix perturbation, which results in degradation of the system performance. The proposed method, denoted low-rank and cross-correlation RDB (LRCC-RDB), considers a total relay transmit power constraint in the system and the goal of maximizing the output signal-to-interference-plus-noise ratio (SINR). We carry out a performance analysis of the proposed LRCC-RDB technique along with a computational complexity study. The proposed LRCC-RDB does not require any costly online optimization procedure and simulations show an excellent performance as compared to previously reported algorithms. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2019.2954519 |