Loading…

Analysis of tornado reports through replicated spatiotemporal point patterns

Summary Understanding the spatiotemporal distribution of tornado events is increasingly imperative, not only because of the natural phenomenon itself and its tremendous complexity but also because we can potentially reduce the risks that they entail. In particular, the US regions are particularly su...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Statistical Society Series C: Applied Statistics 2020-01, Vol.69 (1), p.3-23
Main Authors: González, Jonatan A., Hahn, Ute, Mateu, Jorge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3015-5b70cffe1cd8ef80e7668d2baceeed8bb3e2f26920c8527e3d8f82627bc8e8bf3
cites cdi_FETCH-LOGICAL-c3015-5b70cffe1cd8ef80e7668d2baceeed8bb3e2f26920c8527e3d8f82627bc8e8bf3
container_end_page 23
container_issue 1
container_start_page 3
container_title Journal of the Royal Statistical Society Series C: Applied Statistics
container_volume 69
creator González, Jonatan A.
Hahn, Ute
Mateu, Jorge
description Summary Understanding the spatiotemporal distribution of tornado events is increasingly imperative, not only because of the natural phenomenon itself and its tremendous complexity but also because we can potentially reduce the risks that they entail. In particular, the US regions are particularly susceptible to tornadoes and they are the focus and motivation of our statistical analysis. Tornado reports can be treated as spatiotemporal point patterns, and we develop some methods for the analysis of replicated spatiotemporal patterns to identify significant structural differences between cold and warm seasons along the years. We extend some existing spatial techniques to the spatiotemporal context to test the null hypothesis that two (or more) observed spatiotemporal point patterns with replications are realizations of point processes that have the same second‐order descriptors. In particular, we develop a non‐parametric test to approximate the null distribution of the test statistics. We present intensive simulation studies that demonstrate the validity and power of our test and apply our methods to the motivating problem of tornadoes.
doi_str_mv 10.1111/rssc.12375
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2325232285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325232285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3015-5b70cffe1cd8ef80e7668d2baceeed8bb3e2f26920c8527e3d8f82627bc8e8bf3</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKsv_oKAb8LWXJrd9FGKNygIVp9DNjuxW7abNZMi_femrs8eGIYZvjkMh5BrzmY86y4iuhkXslInZMLnZVUsdFWekgljUhULoebn5AJxy7I4m0_I6r633QFbpMHTFGJvm0AjDCEmpGkTw_5zc5y71tkEDcXBpjYk2GXCdnQIbZ9o3iWIPV6SM287hKu_PiUfjw_vy-di9fr0srxfFU4yrgpVV8x5D9w1GrxmUJWlbkRtHQA0uq4lCC_KhWBOK1GBbLTXohRV7TTo2sspuRl9hxi-9oDJbMM-v96hEVKoXEKrTN2OlIsBMYI3Q2x3Nh4MZ-aYljmmZX7TyjAf4e-2g8M_pHlbr5fjzQ-TSG9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325232285</pqid></control><display><type>article</type><title>Analysis of tornado reports through replicated spatiotemporal point patterns</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><creator>González, Jonatan A. ; Hahn, Ute ; Mateu, Jorge</creator><creatorcontrib>González, Jonatan A. ; Hahn, Ute ; Mateu, Jorge</creatorcontrib><description>Summary Understanding the spatiotemporal distribution of tornado events is increasingly imperative, not only because of the natural phenomenon itself and its tremendous complexity but also because we can potentially reduce the risks that they entail. In particular, the US regions are particularly susceptible to tornadoes and they are the focus and motivation of our statistical analysis. Tornado reports can be treated as spatiotemporal point patterns, and we develop some methods for the analysis of replicated spatiotemporal patterns to identify significant structural differences between cold and warm seasons along the years. We extend some existing spatial techniques to the spatiotemporal context to test the null hypothesis that two (or more) observed spatiotemporal point patterns with replications are realizations of point processes that have the same second‐order descriptors. In particular, we develop a non‐parametric test to approximate the null distribution of the test statistics. We present intensive simulation studies that demonstrate the validity and power of our test and apply our methods to the motivating problem of tornadoes.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/rssc.12375</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Identification methods ; K‐function ; Motivation ; Nonparametric statistics ; Non‐parametric test ; Null hypothesis ; Permutation test ; Power ; Separability ; Simulation ; Spatiotemporal point process ; Statistical analysis ; Statistical tests ; Tornadoes</subject><ispartof>Journal of the Royal Statistical Society Series C: Applied Statistics, 2020-01, Vol.69 (1), p.3-23</ispartof><rights>2019 Royal Statistical Society</rights><rights>Copyright © 2020 The Royal Statistical Society and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3015-5b70cffe1cd8ef80e7668d2baceeed8bb3e2f26920c8527e3d8f82627bc8e8bf3</citedby><cites>FETCH-LOGICAL-c3015-5b70cffe1cd8ef80e7668d2baceeed8bb3e2f26920c8527e3d8f82627bc8e8bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>González, Jonatan A.</creatorcontrib><creatorcontrib>Hahn, Ute</creatorcontrib><creatorcontrib>Mateu, Jorge</creatorcontrib><title>Analysis of tornado reports through replicated spatiotemporal point patterns</title><title>Journal of the Royal Statistical Society Series C: Applied Statistics</title><description>Summary Understanding the spatiotemporal distribution of tornado events is increasingly imperative, not only because of the natural phenomenon itself and its tremendous complexity but also because we can potentially reduce the risks that they entail. In particular, the US regions are particularly susceptible to tornadoes and they are the focus and motivation of our statistical analysis. Tornado reports can be treated as spatiotemporal point patterns, and we develop some methods for the analysis of replicated spatiotemporal patterns to identify significant structural differences between cold and warm seasons along the years. We extend some existing spatial techniques to the spatiotemporal context to test the null hypothesis that two (or more) observed spatiotemporal point patterns with replications are realizations of point processes that have the same second‐order descriptors. In particular, we develop a non‐parametric test to approximate the null distribution of the test statistics. We present intensive simulation studies that demonstrate the validity and power of our test and apply our methods to the motivating problem of tornadoes.</description><subject>Identification methods</subject><subject>K‐function</subject><subject>Motivation</subject><subject>Nonparametric statistics</subject><subject>Non‐parametric test</subject><subject>Null hypothesis</subject><subject>Permutation test</subject><subject>Power</subject><subject>Separability</subject><subject>Simulation</subject><subject>Spatiotemporal point process</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Tornadoes</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kFtLAzEQhYMoWKsv_oKAb8LWXJrd9FGKNygIVp9DNjuxW7abNZMi_femrs8eGIYZvjkMh5BrzmY86y4iuhkXslInZMLnZVUsdFWekgljUhULoebn5AJxy7I4m0_I6r633QFbpMHTFGJvm0AjDCEmpGkTw_5zc5y71tkEDcXBpjYk2GXCdnQIbZ9o3iWIPV6SM287hKu_PiUfjw_vy-di9fr0srxfFU4yrgpVV8x5D9w1GrxmUJWlbkRtHQA0uq4lCC_KhWBOK1GBbLTXohRV7TTo2sspuRl9hxi-9oDJbMM-v96hEVKoXEKrTN2OlIsBMYI3Q2x3Nh4MZ-aYljmmZX7TyjAf4e-2g8M_pHlbr5fjzQ-TSG9I</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>González, Jonatan A.</creator><creator>Hahn, Ute</creator><creator>Mateu, Jorge</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202001</creationdate><title>Analysis of tornado reports through replicated spatiotemporal point patterns</title><author>González, Jonatan A. ; Hahn, Ute ; Mateu, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3015-5b70cffe1cd8ef80e7668d2baceeed8bb3e2f26920c8527e3d8f82627bc8e8bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Identification methods</topic><topic>K‐function</topic><topic>Motivation</topic><topic>Nonparametric statistics</topic><topic>Non‐parametric test</topic><topic>Null hypothesis</topic><topic>Permutation test</topic><topic>Power</topic><topic>Separability</topic><topic>Simulation</topic><topic>Spatiotemporal point process</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Tornadoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González, Jonatan A.</creatorcontrib><creatorcontrib>Hahn, Ute</creatorcontrib><creatorcontrib>Mateu, Jorge</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González, Jonatan A.</au><au>Hahn, Ute</au><au>Mateu, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of tornado reports through replicated spatiotemporal point patterns</atitle><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle><date>2020-01</date><risdate>2020</risdate><volume>69</volume><issue>1</issue><spage>3</spage><epage>23</epage><pages>3-23</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><abstract>Summary Understanding the spatiotemporal distribution of tornado events is increasingly imperative, not only because of the natural phenomenon itself and its tremendous complexity but also because we can potentially reduce the risks that they entail. In particular, the US regions are particularly susceptible to tornadoes and they are the focus and motivation of our statistical analysis. Tornado reports can be treated as spatiotemporal point patterns, and we develop some methods for the analysis of replicated spatiotemporal patterns to identify significant structural differences between cold and warm seasons along the years. We extend some existing spatial techniques to the spatiotemporal context to test the null hypothesis that two (or more) observed spatiotemporal point patterns with replications are realizations of point processes that have the same second‐order descriptors. In particular, we develop a non‐parametric test to approximate the null distribution of the test statistics. We present intensive simulation studies that demonstrate the validity and power of our test and apply our methods to the motivating problem of tornadoes.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1111/rssc.12375</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9254
ispartof Journal of the Royal Statistical Society Series C: Applied Statistics, 2020-01, Vol.69 (1), p.3-23
issn 0035-9254
1467-9876
language eng
recordid cdi_proquest_journals_2325232285
source EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS)
subjects Identification methods
K‐function
Motivation
Nonparametric statistics
Non‐parametric test
Null hypothesis
Permutation test
Power
Separability
Simulation
Spatiotemporal point process
Statistical analysis
Statistical tests
Tornadoes
title Analysis of tornado reports through replicated spatiotemporal point patterns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20tornado%20reports%20through%20replicated%20spatiotemporal%20point%20patterns&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society%20Series%20C:%20Applied%20Statistics&rft.au=Gonz%C3%A1lez,%20Jonatan%20A.&rft.date=2020-01&rft.volume=69&rft.issue=1&rft.spage=3&rft.epage=23&rft.pages=3-23&rft.issn=0035-9254&rft.eissn=1467-9876&rft_id=info:doi/10.1111/rssc.12375&rft_dat=%3Cproquest_cross%3E2325232285%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3015-5b70cffe1cd8ef80e7668d2baceeed8bb3e2f26920c8527e3d8f82627bc8e8bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2325232285&rft_id=info:pmid/&rfr_iscdi=true