Loading…
Analysis of tornado reports through replicated spatiotemporal point patterns
Summary Understanding the spatiotemporal distribution of tornado events is increasingly imperative, not only because of the natural phenomenon itself and its tremendous complexity but also because we can potentially reduce the risks that they entail. In particular, the US regions are particularly su...
Saved in:
Published in: | Journal of the Royal Statistical Society Series C: Applied Statistics 2020-01, Vol.69 (1), p.3-23 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3015-5b70cffe1cd8ef80e7668d2baceeed8bb3e2f26920c8527e3d8f82627bc8e8bf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3015-5b70cffe1cd8ef80e7668d2baceeed8bb3e2f26920c8527e3d8f82627bc8e8bf3 |
container_end_page | 23 |
container_issue | 1 |
container_start_page | 3 |
container_title | Journal of the Royal Statistical Society Series C: Applied Statistics |
container_volume | 69 |
creator | González, Jonatan A. Hahn, Ute Mateu, Jorge |
description | Summary
Understanding the spatiotemporal distribution of tornado events is increasingly imperative, not only because of the natural phenomenon itself and its tremendous complexity but also because we can potentially reduce the risks that they entail. In particular, the US regions are particularly susceptible to tornadoes and they are the focus and motivation of our statistical analysis. Tornado reports can be treated as spatiotemporal point patterns, and we develop some methods for the analysis of replicated spatiotemporal patterns to identify significant structural differences between cold and warm seasons along the years. We extend some existing spatial techniques to the spatiotemporal context to test the null hypothesis that two (or more) observed spatiotemporal point patterns with replications are realizations of point processes that have the same second‐order descriptors. In particular, we develop a non‐parametric test to approximate the null distribution of the test statistics. We present intensive simulation studies that demonstrate the validity and power of our test and apply our methods to the motivating problem of tornadoes. |
doi_str_mv | 10.1111/rssc.12375 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2325232285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325232285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3015-5b70cffe1cd8ef80e7668d2baceeed8bb3e2f26920c8527e3d8f82627bc8e8bf3</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKsv_oKAb8LWXJrd9FGKNygIVp9DNjuxW7abNZMi_femrs8eGIYZvjkMh5BrzmY86y4iuhkXslInZMLnZVUsdFWekgljUhULoebn5AJxy7I4m0_I6r633QFbpMHTFGJvm0AjDCEmpGkTw_5zc5y71tkEDcXBpjYk2GXCdnQIbZ9o3iWIPV6SM287hKu_PiUfjw_vy-di9fr0srxfFU4yrgpVV8x5D9w1GrxmUJWlbkRtHQA0uq4lCC_KhWBOK1GBbLTXohRV7TTo2sspuRl9hxi-9oDJbMM-v96hEVKoXEKrTN2OlIsBMYI3Q2x3Nh4MZ-aYljmmZX7TyjAf4e-2g8M_pHlbr5fjzQ-TSG9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325232285</pqid></control><display><type>article</type><title>Analysis of tornado reports through replicated spatiotemporal point patterns</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><creator>González, Jonatan A. ; Hahn, Ute ; Mateu, Jorge</creator><creatorcontrib>González, Jonatan A. ; Hahn, Ute ; Mateu, Jorge</creatorcontrib><description>Summary
Understanding the spatiotemporal distribution of tornado events is increasingly imperative, not only because of the natural phenomenon itself and its tremendous complexity but also because we can potentially reduce the risks that they entail. In particular, the US regions are particularly susceptible to tornadoes and they are the focus and motivation of our statistical analysis. Tornado reports can be treated as spatiotemporal point patterns, and we develop some methods for the analysis of replicated spatiotemporal patterns to identify significant structural differences between cold and warm seasons along the years. We extend some existing spatial techniques to the spatiotemporal context to test the null hypothesis that two (or more) observed spatiotemporal point patterns with replications are realizations of point processes that have the same second‐order descriptors. In particular, we develop a non‐parametric test to approximate the null distribution of the test statistics. We present intensive simulation studies that demonstrate the validity and power of our test and apply our methods to the motivating problem of tornadoes.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/rssc.12375</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Identification methods ; K‐function ; Motivation ; Nonparametric statistics ; Non‐parametric test ; Null hypothesis ; Permutation test ; Power ; Separability ; Simulation ; Spatiotemporal point process ; Statistical analysis ; Statistical tests ; Tornadoes</subject><ispartof>Journal of the Royal Statistical Society Series C: Applied Statistics, 2020-01, Vol.69 (1), p.3-23</ispartof><rights>2019 Royal Statistical Society</rights><rights>Copyright © 2020 The Royal Statistical Society and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3015-5b70cffe1cd8ef80e7668d2baceeed8bb3e2f26920c8527e3d8f82627bc8e8bf3</citedby><cites>FETCH-LOGICAL-c3015-5b70cffe1cd8ef80e7668d2baceeed8bb3e2f26920c8527e3d8f82627bc8e8bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>González, Jonatan A.</creatorcontrib><creatorcontrib>Hahn, Ute</creatorcontrib><creatorcontrib>Mateu, Jorge</creatorcontrib><title>Analysis of tornado reports through replicated spatiotemporal point patterns</title><title>Journal of the Royal Statistical Society Series C: Applied Statistics</title><description>Summary
Understanding the spatiotemporal distribution of tornado events is increasingly imperative, not only because of the natural phenomenon itself and its tremendous complexity but also because we can potentially reduce the risks that they entail. In particular, the US regions are particularly susceptible to tornadoes and they are the focus and motivation of our statistical analysis. Tornado reports can be treated as spatiotemporal point patterns, and we develop some methods for the analysis of replicated spatiotemporal patterns to identify significant structural differences between cold and warm seasons along the years. We extend some existing spatial techniques to the spatiotemporal context to test the null hypothesis that two (or more) observed spatiotemporal point patterns with replications are realizations of point processes that have the same second‐order descriptors. In particular, we develop a non‐parametric test to approximate the null distribution of the test statistics. We present intensive simulation studies that demonstrate the validity and power of our test and apply our methods to the motivating problem of tornadoes.</description><subject>Identification methods</subject><subject>K‐function</subject><subject>Motivation</subject><subject>Nonparametric statistics</subject><subject>Non‐parametric test</subject><subject>Null hypothesis</subject><subject>Permutation test</subject><subject>Power</subject><subject>Separability</subject><subject>Simulation</subject><subject>Spatiotemporal point process</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Tornadoes</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kFtLAzEQhYMoWKsv_oKAb8LWXJrd9FGKNygIVp9DNjuxW7abNZMi_femrs8eGIYZvjkMh5BrzmY86y4iuhkXslInZMLnZVUsdFWekgljUhULoebn5AJxy7I4m0_I6r633QFbpMHTFGJvm0AjDCEmpGkTw_5zc5y71tkEDcXBpjYk2GXCdnQIbZ9o3iWIPV6SM287hKu_PiUfjw_vy-di9fr0srxfFU4yrgpVV8x5D9w1GrxmUJWlbkRtHQA0uq4lCC_KhWBOK1GBbLTXohRV7TTo2sspuRl9hxi-9oDJbMM-v96hEVKoXEKrTN2OlIsBMYI3Q2x3Nh4MZ-aYljmmZX7TyjAf4e-2g8M_pHlbr5fjzQ-TSG9I</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>González, Jonatan A.</creator><creator>Hahn, Ute</creator><creator>Mateu, Jorge</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202001</creationdate><title>Analysis of tornado reports through replicated spatiotemporal point patterns</title><author>González, Jonatan A. ; Hahn, Ute ; Mateu, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3015-5b70cffe1cd8ef80e7668d2baceeed8bb3e2f26920c8527e3d8f82627bc8e8bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Identification methods</topic><topic>K‐function</topic><topic>Motivation</topic><topic>Nonparametric statistics</topic><topic>Non‐parametric test</topic><topic>Null hypothesis</topic><topic>Permutation test</topic><topic>Power</topic><topic>Separability</topic><topic>Simulation</topic><topic>Spatiotemporal point process</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Tornadoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González, Jonatan A.</creatorcontrib><creatorcontrib>Hahn, Ute</creatorcontrib><creatorcontrib>Mateu, Jorge</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González, Jonatan A.</au><au>Hahn, Ute</au><au>Mateu, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of tornado reports through replicated spatiotemporal point patterns</atitle><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle><date>2020-01</date><risdate>2020</risdate><volume>69</volume><issue>1</issue><spage>3</spage><epage>23</epage><pages>3-23</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><abstract>Summary
Understanding the spatiotemporal distribution of tornado events is increasingly imperative, not only because of the natural phenomenon itself and its tremendous complexity but also because we can potentially reduce the risks that they entail. In particular, the US regions are particularly susceptible to tornadoes and they are the focus and motivation of our statistical analysis. Tornado reports can be treated as spatiotemporal point patterns, and we develop some methods for the analysis of replicated spatiotemporal patterns to identify significant structural differences between cold and warm seasons along the years. We extend some existing spatial techniques to the spatiotemporal context to test the null hypothesis that two (or more) observed spatiotemporal point patterns with replications are realizations of point processes that have the same second‐order descriptors. In particular, we develop a non‐parametric test to approximate the null distribution of the test statistics. We present intensive simulation studies that demonstrate the validity and power of our test and apply our methods to the motivating problem of tornadoes.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1111/rssc.12375</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9254 |
ispartof | Journal of the Royal Statistical Society Series C: Applied Statistics, 2020-01, Vol.69 (1), p.3-23 |
issn | 0035-9254 1467-9876 |
language | eng |
recordid | cdi_proquest_journals_2325232285 |
source | EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS) |
subjects | Identification methods K‐function Motivation Nonparametric statistics Non‐parametric test Null hypothesis Permutation test Power Separability Simulation Spatiotemporal point process Statistical analysis Statistical tests Tornadoes |
title | Analysis of tornado reports through replicated spatiotemporal point patterns |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20tornado%20reports%20through%20replicated%20spatiotemporal%20point%20patterns&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society%20Series%20C:%20Applied%20Statistics&rft.au=Gonz%C3%A1lez,%20Jonatan%20A.&rft.date=2020-01&rft.volume=69&rft.issue=1&rft.spage=3&rft.epage=23&rft.pages=3-23&rft.issn=0035-9254&rft.eissn=1467-9876&rft_id=info:doi/10.1111/rssc.12375&rft_dat=%3Cproquest_cross%3E2325232285%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3015-5b70cffe1cd8ef80e7668d2baceeed8bb3e2f26920c8527e3d8f82627bc8e8bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2325232285&rft_id=info:pmid/&rfr_iscdi=true |