Loading…

Remotely sensing phytoplankton size structure in the Red Sea

Phytoplankton size structure impacts ocean food-web dynamics and biogeochemical cycling, and is thus an important ecological indicator that can be utilised to quantitatively evaluate the state of marine ecosystems. Potential alterations to size structure are predicted to occur in tropical regions un...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 2019-12, Vol.234, p.111387, Article 111387
Main Authors: Gittings, John A., Brewin, Robert J.W., Raitsos, Dionysios E., Kheireddine, Malika, Ouhssain, Mustapha, Jones, Burton H., Hoteit, Ibrahim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-414fe37127ff46a3edebdb0e8df39b34a0254b6cc8e769f87bbcdd99c05fda703
cites cdi_FETCH-LOGICAL-c405t-414fe37127ff46a3edebdb0e8df39b34a0254b6cc8e769f87bbcdd99c05fda703
container_end_page
container_issue
container_start_page 111387
container_title Remote sensing of environment
container_volume 234
creator Gittings, John A.
Brewin, Robert J.W.
Raitsos, Dionysios E.
Kheireddine, Malika
Ouhssain, Mustapha
Jones, Burton H.
Hoteit, Ibrahim
description Phytoplankton size structure impacts ocean food-web dynamics and biogeochemical cycling, and is thus an important ecological indicator that can be utilised to quantitatively evaluate the state of marine ecosystems. Potential alterations to size structure are predicted to occur in tropical regions under future scenarios of climate change. Therefore, there is an increasing requirement for the synoptic monitoring of phytoplankton size structure in marine systems. The Red Sea remains a comparatively unexplored tropical marine ecosystem, particularly with regards to its large-scale biological dynamics. Using an in situ pigment dataset acquired in the Red Sea, we parameterise a two-component, abundance-based phytoplankton size model and apply it to remotely-sensed observations of chlorophyll-a (Chl-a) concentration, to infer Chl-a in two size classes of phytoplankton, small cells 2 μm in size. Satellite-derived estimates of phytoplankton size structure are in good agreement with corresponding in situ measurements and also capture the spatial variability related to regional mesoscale dynamics. Our analysis reveals that, for the estimation of Chl-a in the two size classes, the model performs comparably or in some cases better, to validations in other oceanic regions. Our model parameterisation will be useful for future studies on the seasonal and interannual variability of phytoplankton size classes in the Red Sea, which may ultimately be relevant for understanding trophic linkages between phytoplankton size structure and fisheries, and the development of marine management strategies. •First validation of satellite-derived phytoplankton size structure in the Red Sea•We re-parameterise a two-component, abundance-based phytoplankton size model.•The model performs comparably, or better, to validations in other oceanic regions.•Our re-parameterisation will enable future work on interannual variability and trophic linkages.
doi_str_mv 10.1016/j.rse.2019.111387
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2325293711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425719304067</els_id><sourcerecordid>2325293711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-414fe37127ff46a3edebdb0e8df39b34a0254b6cc8e769f87bbcdd99c05fda703</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AHcB1x3zmrRp0Y0MfsGAMOo6tMmLkzrT1iQVxl9vh7p29Tb33Ps4hFwCWwCD_LpZ-ICLlEG5AABeyCMyg0KWCZNMHJMZY1wkIs3kKTkLoWEMskLCjNyucddF3O5pwDa49oP2m33s-m3VfsaupcH9IA3RDzoOHqlradwgXaOhr1idkxNbbQNe_N05eX-4f1s-JauXx-fl3SrRgmUxESAscgmptFbkFUeDtakZFsbysuaiYmkm6lzrAmVe2kLWtTamLDXLrKkk43NyNfX2vvsaMETVdINvx0mV8jRLy7EcxhRMKe27EDxa1Xu3q_xeAVMHSapRoyR1kKQmSSNzMzE4vv_t0KugHbYajfOoozKd-4f-BfTFb7c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325293711</pqid></control><display><type>article</type><title>Remotely sensing phytoplankton size structure in the Red Sea</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Gittings, John A. ; Brewin, Robert J.W. ; Raitsos, Dionysios E. ; Kheireddine, Malika ; Ouhssain, Mustapha ; Jones, Burton H. ; Hoteit, Ibrahim</creator><creatorcontrib>Gittings, John A. ; Brewin, Robert J.W. ; Raitsos, Dionysios E. ; Kheireddine, Malika ; Ouhssain, Mustapha ; Jones, Burton H. ; Hoteit, Ibrahim</creatorcontrib><description>Phytoplankton size structure impacts ocean food-web dynamics and biogeochemical cycling, and is thus an important ecological indicator that can be utilised to quantitatively evaluate the state of marine ecosystems. Potential alterations to size structure are predicted to occur in tropical regions under future scenarios of climate change. Therefore, there is an increasing requirement for the synoptic monitoring of phytoplankton size structure in marine systems. The Red Sea remains a comparatively unexplored tropical marine ecosystem, particularly with regards to its large-scale biological dynamics. Using an in situ pigment dataset acquired in the Red Sea, we parameterise a two-component, abundance-based phytoplankton size model and apply it to remotely-sensed observations of chlorophyll-a (Chl-a) concentration, to infer Chl-a in two size classes of phytoplankton, small cells &lt;2 μm in size (picophytoplankton) and large cells &gt;2 μm in size. Satellite-derived estimates of phytoplankton size structure are in good agreement with corresponding in situ measurements and also capture the spatial variability related to regional mesoscale dynamics. Our analysis reveals that, for the estimation of Chl-a in the two size classes, the model performs comparably or in some cases better, to validations in other oceanic regions. Our model parameterisation will be useful for future studies on the seasonal and interannual variability of phytoplankton size classes in the Red Sea, which may ultimately be relevant for understanding trophic linkages between phytoplankton size structure and fisheries, and the development of marine management strategies. •First validation of satellite-derived phytoplankton size structure in the Red Sea•We re-parameterise a two-component, abundance-based phytoplankton size model.•The model performs comparably, or better, to validations in other oceanic regions.•Our re-parameterisation will enable future work on interannual variability and trophic linkages.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2019.111387</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Cell size ; Chlorophyll ; Climate change ; Dynamic structural analysis ; Environmental changes ; Fisheries ; Fishery development ; Food chains ; Food webs ; In situ measurement ; Interannual variability ; Marine ecosystems ; Marine systems ; Ocean colour ; Parameterization ; Phytoplankton ; Plankton ; Red Sea ; Regional analysis ; Remote sensing ; Seasonal variability ; Size structure ; Spatial variability ; Tropical environment ; Tropical environments</subject><ispartof>Remote sensing of environment, 2019-12, Vol.234, p.111387, Article 111387</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier BV Dec 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-414fe37127ff46a3edebdb0e8df39b34a0254b6cc8e769f87bbcdd99c05fda703</citedby><cites>FETCH-LOGICAL-c405t-414fe37127ff46a3edebdb0e8df39b34a0254b6cc8e769f87bbcdd99c05fda703</cites><orcidid>0000-0002-3751-4393 ; 0000-0003-4183-3482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gittings, John A.</creatorcontrib><creatorcontrib>Brewin, Robert J.W.</creatorcontrib><creatorcontrib>Raitsos, Dionysios E.</creatorcontrib><creatorcontrib>Kheireddine, Malika</creatorcontrib><creatorcontrib>Ouhssain, Mustapha</creatorcontrib><creatorcontrib>Jones, Burton H.</creatorcontrib><creatorcontrib>Hoteit, Ibrahim</creatorcontrib><title>Remotely sensing phytoplankton size structure in the Red Sea</title><title>Remote sensing of environment</title><description>Phytoplankton size structure impacts ocean food-web dynamics and biogeochemical cycling, and is thus an important ecological indicator that can be utilised to quantitatively evaluate the state of marine ecosystems. Potential alterations to size structure are predicted to occur in tropical regions under future scenarios of climate change. Therefore, there is an increasing requirement for the synoptic monitoring of phytoplankton size structure in marine systems. The Red Sea remains a comparatively unexplored tropical marine ecosystem, particularly with regards to its large-scale biological dynamics. Using an in situ pigment dataset acquired in the Red Sea, we parameterise a two-component, abundance-based phytoplankton size model and apply it to remotely-sensed observations of chlorophyll-a (Chl-a) concentration, to infer Chl-a in two size classes of phytoplankton, small cells &lt;2 μm in size (picophytoplankton) and large cells &gt;2 μm in size. Satellite-derived estimates of phytoplankton size structure are in good agreement with corresponding in situ measurements and also capture the spatial variability related to regional mesoscale dynamics. Our analysis reveals that, for the estimation of Chl-a in the two size classes, the model performs comparably or in some cases better, to validations in other oceanic regions. Our model parameterisation will be useful for future studies on the seasonal and interannual variability of phytoplankton size classes in the Red Sea, which may ultimately be relevant for understanding trophic linkages between phytoplankton size structure and fisheries, and the development of marine management strategies. •First validation of satellite-derived phytoplankton size structure in the Red Sea•We re-parameterise a two-component, abundance-based phytoplankton size model.•The model performs comparably, or better, to validations in other oceanic regions.•Our re-parameterisation will enable future work on interannual variability and trophic linkages.</description><subject>Cell size</subject><subject>Chlorophyll</subject><subject>Climate change</subject><subject>Dynamic structural analysis</subject><subject>Environmental changes</subject><subject>Fisheries</subject><subject>Fishery development</subject><subject>Food chains</subject><subject>Food webs</subject><subject>In situ measurement</subject><subject>Interannual variability</subject><subject>Marine ecosystems</subject><subject>Marine systems</subject><subject>Ocean colour</subject><subject>Parameterization</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Red Sea</subject><subject>Regional analysis</subject><subject>Remote sensing</subject><subject>Seasonal variability</subject><subject>Size structure</subject><subject>Spatial variability</subject><subject>Tropical environment</subject><subject>Tropical environments</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AHcB1x3zmrRp0Y0MfsGAMOo6tMmLkzrT1iQVxl9vh7p29Tb33Ps4hFwCWwCD_LpZ-ICLlEG5AABeyCMyg0KWCZNMHJMZY1wkIs3kKTkLoWEMskLCjNyucddF3O5pwDa49oP2m33s-m3VfsaupcH9IA3RDzoOHqlradwgXaOhr1idkxNbbQNe_N05eX-4f1s-JauXx-fl3SrRgmUxESAscgmptFbkFUeDtakZFsbysuaiYmkm6lzrAmVe2kLWtTamLDXLrKkk43NyNfX2vvsaMETVdINvx0mV8jRLy7EcxhRMKe27EDxa1Xu3q_xeAVMHSapRoyR1kKQmSSNzMzE4vv_t0KugHbYajfOoozKd-4f-BfTFb7c</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Gittings, John A.</creator><creator>Brewin, Robert J.W.</creator><creator>Raitsos, Dionysios E.</creator><creator>Kheireddine, Malika</creator><creator>Ouhssain, Mustapha</creator><creator>Jones, Burton H.</creator><creator>Hoteit, Ibrahim</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-3751-4393</orcidid><orcidid>https://orcid.org/0000-0003-4183-3482</orcidid></search><sort><creationdate>20191201</creationdate><title>Remotely sensing phytoplankton size structure in the Red Sea</title><author>Gittings, John A. ; Brewin, Robert J.W. ; Raitsos, Dionysios E. ; Kheireddine, Malika ; Ouhssain, Mustapha ; Jones, Burton H. ; Hoteit, Ibrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-414fe37127ff46a3edebdb0e8df39b34a0254b6cc8e769f87bbcdd99c05fda703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cell size</topic><topic>Chlorophyll</topic><topic>Climate change</topic><topic>Dynamic structural analysis</topic><topic>Environmental changes</topic><topic>Fisheries</topic><topic>Fishery development</topic><topic>Food chains</topic><topic>Food webs</topic><topic>In situ measurement</topic><topic>Interannual variability</topic><topic>Marine ecosystems</topic><topic>Marine systems</topic><topic>Ocean colour</topic><topic>Parameterization</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Red Sea</topic><topic>Regional analysis</topic><topic>Remote sensing</topic><topic>Seasonal variability</topic><topic>Size structure</topic><topic>Spatial variability</topic><topic>Tropical environment</topic><topic>Tropical environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gittings, John A.</creatorcontrib><creatorcontrib>Brewin, Robert J.W.</creatorcontrib><creatorcontrib>Raitsos, Dionysios E.</creatorcontrib><creatorcontrib>Kheireddine, Malika</creatorcontrib><creatorcontrib>Ouhssain, Mustapha</creatorcontrib><creatorcontrib>Jones, Burton H.</creatorcontrib><creatorcontrib>Hoteit, Ibrahim</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gittings, John A.</au><au>Brewin, Robert J.W.</au><au>Raitsos, Dionysios E.</au><au>Kheireddine, Malika</au><au>Ouhssain, Mustapha</au><au>Jones, Burton H.</au><au>Hoteit, Ibrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remotely sensing phytoplankton size structure in the Red Sea</atitle><jtitle>Remote sensing of environment</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>234</volume><spage>111387</spage><pages>111387-</pages><artnum>111387</artnum><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>Phytoplankton size structure impacts ocean food-web dynamics and biogeochemical cycling, and is thus an important ecological indicator that can be utilised to quantitatively evaluate the state of marine ecosystems. Potential alterations to size structure are predicted to occur in tropical regions under future scenarios of climate change. Therefore, there is an increasing requirement for the synoptic monitoring of phytoplankton size structure in marine systems. The Red Sea remains a comparatively unexplored tropical marine ecosystem, particularly with regards to its large-scale biological dynamics. Using an in situ pigment dataset acquired in the Red Sea, we parameterise a two-component, abundance-based phytoplankton size model and apply it to remotely-sensed observations of chlorophyll-a (Chl-a) concentration, to infer Chl-a in two size classes of phytoplankton, small cells &lt;2 μm in size (picophytoplankton) and large cells &gt;2 μm in size. Satellite-derived estimates of phytoplankton size structure are in good agreement with corresponding in situ measurements and also capture the spatial variability related to regional mesoscale dynamics. Our analysis reveals that, for the estimation of Chl-a in the two size classes, the model performs comparably or in some cases better, to validations in other oceanic regions. Our model parameterisation will be useful for future studies on the seasonal and interannual variability of phytoplankton size classes in the Red Sea, which may ultimately be relevant for understanding trophic linkages between phytoplankton size structure and fisheries, and the development of marine management strategies. •First validation of satellite-derived phytoplankton size structure in the Red Sea•We re-parameterise a two-component, abundance-based phytoplankton size model.•The model performs comparably, or better, to validations in other oceanic regions.•Our re-parameterisation will enable future work on interannual variability and trophic linkages.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2019.111387</doi><orcidid>https://orcid.org/0000-0002-3751-4393</orcidid><orcidid>https://orcid.org/0000-0003-4183-3482</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2019-12, Vol.234, p.111387, Article 111387
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_journals_2325293711
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Cell size
Chlorophyll
Climate change
Dynamic structural analysis
Environmental changes
Fisheries
Fishery development
Food chains
Food webs
In situ measurement
Interannual variability
Marine ecosystems
Marine systems
Ocean colour
Parameterization
Phytoplankton
Plankton
Red Sea
Regional analysis
Remote sensing
Seasonal variability
Size structure
Spatial variability
Tropical environment
Tropical environments
title Remotely sensing phytoplankton size structure in the Red Sea
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remotely%20sensing%20phytoplankton%20size%20structure%20in%20the%20Red%20Sea&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Gittings,%20John%20A.&rft.date=2019-12-01&rft.volume=234&rft.spage=111387&rft.pages=111387-&rft.artnum=111387&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2019.111387&rft_dat=%3Cproquest_cross%3E2325293711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-414fe37127ff46a3edebdb0e8df39b34a0254b6cc8e769f87bbcdd99c05fda703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2325293711&rft_id=info:pmid/&rfr_iscdi=true