Loading…

Prediction of Indentation Size Formed by a High-Velocity Impingement of a Solid Sphere Based on an Expanding Cavity Model

The fan blades and turbine blades in a jet engine are seriously damaged by high velocity impingements of various foreign objects. In this study, a prediction method of indentation size formed by a high-velocity impingement of a solid sphere (PMIS) was developed from a theoretical model based on an e...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2019-12, Vol.827, p.355-360
Main Authors: Ito, Kiyohiro, Arai, Masayuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fan blades and turbine blades in a jet engine are seriously damaged by high velocity impingements of various foreign objects. In this study, a prediction method of indentation size formed by a high-velocity impingement of a solid sphere (PMIS) was developed from a theoretical model based on an expanding cavity model and energy conservation before and after impingement. The Johnson-Cook constitutive equation was employed to introduce effects of work hardening, strain rate hardening and thermal softening into the cavity model. As a result, the distribution of equivalent plastic strain, equivalent plastic strain rate, temperature and equivalent von Mises stress estimated using the expanding cavity model was in good agreement with the data obtained from the finite element analysis. In addition, it has been demonstrated that PMIS can accurately predict the radius of indentation formed on various metallic materials subjected to the impingement of a solid sphere with the radii of 0.75, 1.5 and 3 mm at several impact velocities from 50 to 300 m/s.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.827.355