Loading…
Ion-induced nanopatterning of a bacterial cellulose hydrogel
Hydrogels provide a solution-mimicking environment for the interaction with living systems that make them desirable for various biomedical and technological applications. Because relevant biological processes in living tissues occur at the biomolecular scale, hydrogel nanopatterning can be leveraged...
Saved in:
Published in: | arXiv.org 2020-06 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Arias, Sandra L Cheng, Ming Kit Civantos, Ana Devorkin, Joshua Jaramillo, Camilo Allain, Jean Paul |
description | Hydrogels provide a solution-mimicking environment for the interaction with living systems that make them desirable for various biomedical and technological applications. Because relevant biological processes in living tissues occur at the biomolecular scale, hydrogel nanopatterning can be leveraged to attain novel material properties and functionalities. However, the fabrication of high aspect ratio (HAR) nanostructures in hydrogels capable of self-standing in aqueous environments, with fine control of the size and shape distribution, remains challenging. Here, we report the synthesis of nanostructures with a HAR in bacterial cellulose (BC) hydrogel via directed plasma nanosynthesis using argon ions. The nanostructures in BC are reproducible, stable to sterilization, and liquid immersion. Using in-situ surface characterization and semi-empirical modeling, we discovered that pattern formation was linked to the formation of graphite-like clusters composed of a mixture of C-C and C=C bonds. Moreover, our model predicts that reactive species at the onset of the argon irradiation accelerate the bond breaking of weak bonds, contributing to the formation of an amorphous carbon layer and nanopattern growth. |
doi_str_mv | 10.48550/arxiv.1912.05650 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2325616009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325616009</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-c1a0f432c03f0c1694d723288fa0cda9c240cb1f0f522e5feea77de2dee4d803</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMgtNR-gLuA6xlvbpJ5gBspPgoFF7ovt8lNOyUkdR6if--Arg5nc44QtwpK01gL99R_d1-lahWWYCsLV2KJWquiMYgLsR6GMwBgVaO1eiketjkVXfKTYy8TpXyhceQ-dekoc5AkD-Rm7yhKxzFOMQ8sTz--z0eON-I6UBx4_c-VeH9--ti8Fru3l-3mcVeQxbZwiiAYjQ50AKeq1vgaNTZNIHCeWocG3EEFCBaRbWCmuvaMntn4BvRK3P1VL33-nHgY9-c89Wke7ueMrVQF0OpfC6VJ2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325616009</pqid></control><display><type>article</type><title>Ion-induced nanopatterning of a bacterial cellulose hydrogel</title><source>Publicly Available Content Database</source><creator>Arias, Sandra L ; Cheng, Ming Kit ; Civantos, Ana ; Devorkin, Joshua ; Jaramillo, Camilo ; Allain, Jean Paul</creator><creatorcontrib>Arias, Sandra L ; Cheng, Ming Kit ; Civantos, Ana ; Devorkin, Joshua ; Jaramillo, Camilo ; Allain, Jean Paul</creatorcontrib><description>Hydrogels provide a solution-mimicking environment for the interaction with living systems that make them desirable for various biomedical and technological applications. Because relevant biological processes in living tissues occur at the biomolecular scale, hydrogel nanopatterning can be leveraged to attain novel material properties and functionalities. However, the fabrication of high aspect ratio (HAR) nanostructures in hydrogels capable of self-standing in aqueous environments, with fine control of the size and shape distribution, remains challenging. Here, we report the synthesis of nanostructures with a HAR in bacterial cellulose (BC) hydrogel via directed plasma nanosynthesis using argon ions. The nanostructures in BC are reproducible, stable to sterilization, and liquid immersion. Using in-situ surface characterization and semi-empirical modeling, we discovered that pattern formation was linked to the formation of graphite-like clusters composed of a mixture of C-C and C=C bonds. Moreover, our model predicts that reactive species at the onset of the argon irradiation accelerate the bond breaking of weak bonds, contributing to the formation of an amorphous carbon layer and nanopattern growth.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1912.05650</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Aqueous environments ; Argon ; Argon ions ; Biological activity ; Biomedical materials ; Bonding strength ; Cellulose ; High aspect ratio ; Hydrogels ; Material properties ; Nanostructure ; Sterilization ; Submerging ; Surface properties</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2325616009?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Arias, Sandra L</creatorcontrib><creatorcontrib>Cheng, Ming Kit</creatorcontrib><creatorcontrib>Civantos, Ana</creatorcontrib><creatorcontrib>Devorkin, Joshua</creatorcontrib><creatorcontrib>Jaramillo, Camilo</creatorcontrib><creatorcontrib>Allain, Jean Paul</creatorcontrib><title>Ion-induced nanopatterning of a bacterial cellulose hydrogel</title><title>arXiv.org</title><description>Hydrogels provide a solution-mimicking environment for the interaction with living systems that make them desirable for various biomedical and technological applications. Because relevant biological processes in living tissues occur at the biomolecular scale, hydrogel nanopatterning can be leveraged to attain novel material properties and functionalities. However, the fabrication of high aspect ratio (HAR) nanostructures in hydrogels capable of self-standing in aqueous environments, with fine control of the size and shape distribution, remains challenging. Here, we report the synthesis of nanostructures with a HAR in bacterial cellulose (BC) hydrogel via directed plasma nanosynthesis using argon ions. The nanostructures in BC are reproducible, stable to sterilization, and liquid immersion. Using in-situ surface characterization and semi-empirical modeling, we discovered that pattern formation was linked to the formation of graphite-like clusters composed of a mixture of C-C and C=C bonds. Moreover, our model predicts that reactive species at the onset of the argon irradiation accelerate the bond breaking of weak bonds, contributing to the formation of an amorphous carbon layer and nanopattern growth.</description><subject>Aqueous environments</subject><subject>Argon</subject><subject>Argon ions</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Bonding strength</subject><subject>Cellulose</subject><subject>High aspect ratio</subject><subject>Hydrogels</subject><subject>Material properties</subject><subject>Nanostructure</subject><subject>Sterilization</subject><subject>Submerging</subject><subject>Surface properties</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKAzEUQIMgtNR-gLuA6xlvbpJ5gBspPgoFF7ovt8lNOyUkdR6if--Arg5nc44QtwpK01gL99R_d1-lahWWYCsLV2KJWquiMYgLsR6GMwBgVaO1eiketjkVXfKTYy8TpXyhceQ-dekoc5AkD-Rm7yhKxzFOMQ8sTz--z0eON-I6UBx4_c-VeH9--ti8Fru3l-3mcVeQxbZwiiAYjQ50AKeq1vgaNTZNIHCeWocG3EEFCBaRbWCmuvaMntn4BvRK3P1VL33-nHgY9-c89Wke7ueMrVQF0OpfC6VJ2w</recordid><startdate>20200621</startdate><enddate>20200621</enddate><creator>Arias, Sandra L</creator><creator>Cheng, Ming Kit</creator><creator>Civantos, Ana</creator><creator>Devorkin, Joshua</creator><creator>Jaramillo, Camilo</creator><creator>Allain, Jean Paul</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200621</creationdate><title>Ion-induced nanopatterning of a bacterial cellulose hydrogel</title><author>Arias, Sandra L ; Cheng, Ming Kit ; Civantos, Ana ; Devorkin, Joshua ; Jaramillo, Camilo ; Allain, Jean Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-c1a0f432c03f0c1694d723288fa0cda9c240cb1f0f522e5feea77de2dee4d803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous environments</topic><topic>Argon</topic><topic>Argon ions</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Bonding strength</topic><topic>Cellulose</topic><topic>High aspect ratio</topic><topic>Hydrogels</topic><topic>Material properties</topic><topic>Nanostructure</topic><topic>Sterilization</topic><topic>Submerging</topic><topic>Surface properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Arias, Sandra L</creatorcontrib><creatorcontrib>Cheng, Ming Kit</creatorcontrib><creatorcontrib>Civantos, Ana</creatorcontrib><creatorcontrib>Devorkin, Joshua</creatorcontrib><creatorcontrib>Jaramillo, Camilo</creatorcontrib><creatorcontrib>Allain, Jean Paul</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias, Sandra L</au><au>Cheng, Ming Kit</au><au>Civantos, Ana</au><au>Devorkin, Joshua</au><au>Jaramillo, Camilo</au><au>Allain, Jean Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion-induced nanopatterning of a bacterial cellulose hydrogel</atitle><jtitle>arXiv.org</jtitle><date>2020-06-21</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Hydrogels provide a solution-mimicking environment for the interaction with living systems that make them desirable for various biomedical and technological applications. Because relevant biological processes in living tissues occur at the biomolecular scale, hydrogel nanopatterning can be leveraged to attain novel material properties and functionalities. However, the fabrication of high aspect ratio (HAR) nanostructures in hydrogels capable of self-standing in aqueous environments, with fine control of the size and shape distribution, remains challenging. Here, we report the synthesis of nanostructures with a HAR in bacterial cellulose (BC) hydrogel via directed plasma nanosynthesis using argon ions. The nanostructures in BC are reproducible, stable to sterilization, and liquid immersion. Using in-situ surface characterization and semi-empirical modeling, we discovered that pattern formation was linked to the formation of graphite-like clusters composed of a mixture of C-C and C=C bonds. Moreover, our model predicts that reactive species at the onset of the argon irradiation accelerate the bond breaking of weak bonds, contributing to the formation of an amorphous carbon layer and nanopattern growth.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1912.05650</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2325616009 |
source | Publicly Available Content Database |
subjects | Aqueous environments Argon Argon ions Biological activity Biomedical materials Bonding strength Cellulose High aspect ratio Hydrogels Material properties Nanostructure Sterilization Submerging Surface properties |
title | Ion-induced nanopatterning of a bacterial cellulose hydrogel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion-induced%20nanopatterning%20of%20a%20bacterial%20cellulose%20hydrogel&rft.jtitle=arXiv.org&rft.au=Arias,%20Sandra%20L&rft.date=2020-06-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1912.05650&rft_dat=%3Cproquest%3E2325616009%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-c1a0f432c03f0c1694d723288fa0cda9c240cb1f0f522e5feea77de2dee4d803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2325616009&rft_id=info:pmid/&rfr_iscdi=true |