Loading…

Pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats

The aim of this study was to characterize the pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats, which harbor a mutation in the c-kit gene that affects development of interstitial cells of Cajal (ICC). In Ws/Ws rats, the density of KIT-positive cells was markedly...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology: Gastrointestinal and liver physiology 2007-06, Vol.292 (6), p.G1499-G1510
Main Authors: Albertí, E, Mikkelsen, H B, Wang, X Y, Díaz, M, Larsen, J O, Huizinga, J D, Jiménez, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study was to characterize the pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats, which harbor a mutation in the c-kit gene that affects development of interstitial cells of Cajal (ICC). In Ws/Ws rats, the density of KIT-positive cells was markedly reduced. Wild-type, but not Ws/Ws, rats showed low- and high-frequency cyclic depolarization that were associated with highly regular myogenic motor patterns at the same frequencies. In Ws/Ws rats, irregular patterns of action potentials triggered irregular muscle contractions occurring within a bandwidth of 10-20 cycles/min. Spontaneous activity of nitrergic nerves caused sustained inhibition of muscle activity in both wild-type (+/+) and Ws/Ws rats. Electrical field stimulation of enteric nerves, after blockade of cholinergic and adrenergic activity, elicited inhibition of mechanical activity and biphasic inhibitory junction potentials both in wild-type and Ws/Ws rats. Apamin-sensitive, likely purinergic, inhibitory innervation was not affected by loss of ICC. Variable presence of nitrergic innervation likely reflects the presence of direct nitrergic innervation to smooth muscle cells as well as indirect innervation via ICC. In summary, loss of ICC markedly affects pacemaker and motor activities of the rat colon. Inhibitory innervation is largely maintained but nitrergic innervation is reduced possibly related to the loss of ICC-mediated relaxation.
ISSN:0193-1857
1522-1547
DOI:10.1152/ajpgi.00136.2006