Loading…
PEG blocking of single pores arising on phase transitions in unmodified lipid bilayers
Changes in ionic permeability of bilayer lipid membranes (BLM) from dipalmitoyl phosphatidylcholine at temperature of phase transition in 1 M LiCl solution in the presence of polyethyleneglycols (PEG) of various molecular masses are studied. The transition of ionic membrane channels from conducting...
Saved in:
Published in: | Biophysics (Oxford) 2008-10, Vol.53 (5), p.390-395 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2306-e825e09eceeae4879352424f10fede6a7900f5f0a9d45e75be2ce0aae085e72e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2306-e825e09eceeae4879352424f10fede6a7900f5f0a9d45e75be2ce0aae085e72e3 |
container_end_page | 395 |
container_issue | 5 |
container_start_page | 390 |
container_title | Biophysics (Oxford) |
container_volume | 53 |
creator | Antonov, V. F. Smirnova, E. Yu Anosov, A. A. Norik, V. P. Nemchenko, O. Yu |
description | Changes in ionic permeability of bilayer lipid membranes (BLM) from dipalmitoyl phosphatidylcholine at temperature of phase transition in 1 M LiCl solution in the presence of polyethyleneglycols (PEG) of various molecular masses are studied. The transition of ionic membrane channels from conducting to blocked nonconducting state using polymers makes it possible to calibrate lipid pores. It is shown that low-molecular weight glycerol and PEG with molecular weights of 300 and 600 decrease the amplitude of current fluctuations through the membrane, the decrease being proportional to the size of the polymer molecule incorporated. The addition of PEG with molecular masses of 1450, 2000, and 3350 decrease the current fluctuations to the basal noise level. The result is considered as a complete blockade of ion channel conductivity. In the presence of rather large polymers, such as PEG with molecular masses of 6000 and 20000, which are hardly incorporated in the pore, single current fluctuations occur again; however, their amplitudes are somewhat smaller than in the absence of PEG. It is assumed that a complete blockade of the conductivity of lipid ionic channels by PEG with molecular masses of 1450, 2000, and 3350 is due to dehydration of the pore gap and the conversion of the hydrophilic pore to a hydrophobic one. |
doi_str_mv | 10.1134/S0006350908050126 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_232666189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896606351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2306-e825e09eceeae4879352424f10fede6a7900f5f0a9d45e75be2ce0aae085e72e3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4Ab8H76iSbpLtHKbUKBQU_rku6O6mp22TNdA_9926t4EE8PWbexwyPsUsB10Lk6uYZAEyuoYQCNAhpjthIaK0zY7Q6ZqM9ne35U3ZGtAYQCpQesben2Zwv21h_-LDi0XEasEXexYTEbfL0vQ-8e7eEfJtsIL_1MRD3gfdhExvvPDa89Z1v-NK3doeJztmJsy3hxQ-O2evd7GV6ny0e5w_T20VWy3x4CAupEUqsES2qYlLmWiqpnACHDRo7KQGcdmDLRmmc6CXKGsFahGIYJeZjdnXI7VL87JG21Tr2KQwnK5lLY4woykEkDqI6RaKEruqS39i0qwRU-_aqP-0NHnnw0KANK0y_wf-bvgBwgHFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232666189</pqid></control><display><type>article</type><title>PEG blocking of single pores arising on phase transitions in unmodified lipid bilayers</title><source>Springer Nature</source><creator>Antonov, V. F. ; Smirnova, E. Yu ; Anosov, A. A. ; Norik, V. P. ; Nemchenko, O. Yu</creator><creatorcontrib>Antonov, V. F. ; Smirnova, E. Yu ; Anosov, A. A. ; Norik, V. P. ; Nemchenko, O. Yu</creatorcontrib><description>Changes in ionic permeability of bilayer lipid membranes (BLM) from dipalmitoyl phosphatidylcholine at temperature of phase transition in 1 M LiCl solution in the presence of polyethyleneglycols (PEG) of various molecular masses are studied. The transition of ionic membrane channels from conducting to blocked nonconducting state using polymers makes it possible to calibrate lipid pores. It is shown that low-molecular weight glycerol and PEG with molecular weights of 300 and 600 decrease the amplitude of current fluctuations through the membrane, the decrease being proportional to the size of the polymer molecule incorporated. The addition of PEG with molecular masses of 1450, 2000, and 3350 decrease the current fluctuations to the basal noise level. The result is considered as a complete blockade of ion channel conductivity. In the presence of rather large polymers, such as PEG with molecular masses of 6000 and 20000, which are hardly incorporated in the pore, single current fluctuations occur again; however, their amplitudes are somewhat smaller than in the absence of PEG. It is assumed that a complete blockade of the conductivity of lipid ionic channels by PEG with molecular masses of 1450, 2000, and 3350 is due to dehydration of the pore gap and the conversion of the hydrophilic pore to a hydrophobic one.</description><identifier>ISSN: 0006-3509</identifier><identifier>EISSN: 1555-6654</identifier><identifier>DOI: 10.1134/S0006350908050126</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Biological and Medical Physics ; Biophysics ; Cell Biophysics ; Lipids ; Membranes ; Molecular biology ; Permeability ; Physics ; Physics and Astronomy</subject><ispartof>Biophysics (Oxford), 2008-10, Vol.53 (5), p.390-395</ispartof><rights>Pleiades Publishing, Ltd. 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2306-e825e09eceeae4879352424f10fede6a7900f5f0a9d45e75be2ce0aae085e72e3</citedby><cites>FETCH-LOGICAL-c2306-e825e09eceeae4879352424f10fede6a7900f5f0a9d45e75be2ce0aae085e72e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Antonov, V. F.</creatorcontrib><creatorcontrib>Smirnova, E. Yu</creatorcontrib><creatorcontrib>Anosov, A. A.</creatorcontrib><creatorcontrib>Norik, V. P.</creatorcontrib><creatorcontrib>Nemchenko, O. Yu</creatorcontrib><title>PEG blocking of single pores arising on phase transitions in unmodified lipid bilayers</title><title>Biophysics (Oxford)</title><addtitle>BIOPHYSICS</addtitle><description>Changes in ionic permeability of bilayer lipid membranes (BLM) from dipalmitoyl phosphatidylcholine at temperature of phase transition in 1 M LiCl solution in the presence of polyethyleneglycols (PEG) of various molecular masses are studied. The transition of ionic membrane channels from conducting to blocked nonconducting state using polymers makes it possible to calibrate lipid pores. It is shown that low-molecular weight glycerol and PEG with molecular weights of 300 and 600 decrease the amplitude of current fluctuations through the membrane, the decrease being proportional to the size of the polymer molecule incorporated. The addition of PEG with molecular masses of 1450, 2000, and 3350 decrease the current fluctuations to the basal noise level. The result is considered as a complete blockade of ion channel conductivity. In the presence of rather large polymers, such as PEG with molecular masses of 6000 and 20000, which are hardly incorporated in the pore, single current fluctuations occur again; however, their amplitudes are somewhat smaller than in the absence of PEG. It is assumed that a complete blockade of the conductivity of lipid ionic channels by PEG with molecular masses of 1450, 2000, and 3350 is due to dehydration of the pore gap and the conversion of the hydrophilic pore to a hydrophobic one.</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Cell Biophysics</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Molecular biology</subject><subject>Permeability</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0006-3509</issn><issn>1555-6654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4Ab8H76iSbpLtHKbUKBQU_rku6O6mp22TNdA_9926t4EE8PWbexwyPsUsB10Lk6uYZAEyuoYQCNAhpjthIaK0zY7Q6ZqM9ne35U3ZGtAYQCpQesben2Zwv21h_-LDi0XEasEXexYTEbfL0vQ-8e7eEfJtsIL_1MRD3gfdhExvvPDa89Z1v-NK3doeJztmJsy3hxQ-O2evd7GV6ny0e5w_T20VWy3x4CAupEUqsES2qYlLmWiqpnACHDRo7KQGcdmDLRmmc6CXKGsFahGIYJeZjdnXI7VL87JG21Tr2KQwnK5lLY4woykEkDqI6RaKEruqS39i0qwRU-_aqP-0NHnnw0KANK0y_wf-bvgBwgHFk</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Antonov, V. F.</creator><creator>Smirnova, E. Yu</creator><creator>Anosov, A. A.</creator><creator>Norik, V. P.</creator><creator>Nemchenko, O. Yu</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>200810</creationdate><title>PEG blocking of single pores arising on phase transitions in unmodified lipid bilayers</title><author>Antonov, V. F. ; Smirnova, E. Yu ; Anosov, A. A. ; Norik, V. P. ; Nemchenko, O. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2306-e825e09eceeae4879352424f10fede6a7900f5f0a9d45e75be2ce0aae085e72e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Cell Biophysics</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Molecular biology</topic><topic>Permeability</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>online_resources</toplevel><creatorcontrib>Antonov, V. F.</creatorcontrib><creatorcontrib>Smirnova, E. Yu</creatorcontrib><creatorcontrib>Anosov, A. A.</creatorcontrib><creatorcontrib>Norik, V. P.</creatorcontrib><creatorcontrib>Nemchenko, O. Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Biophysics (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonov, V. F.</au><au>Smirnova, E. Yu</au><au>Anosov, A. A.</au><au>Norik, V. P.</au><au>Nemchenko, O. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PEG blocking of single pores arising on phase transitions in unmodified lipid bilayers</atitle><jtitle>Biophysics (Oxford)</jtitle><stitle>BIOPHYSICS</stitle><date>2008-10</date><risdate>2008</risdate><volume>53</volume><issue>5</issue><spage>390</spage><epage>395</epage><pages>390-395</pages><issn>0006-3509</issn><eissn>1555-6654</eissn><abstract>Changes in ionic permeability of bilayer lipid membranes (BLM) from dipalmitoyl phosphatidylcholine at temperature of phase transition in 1 M LiCl solution in the presence of polyethyleneglycols (PEG) of various molecular masses are studied. The transition of ionic membrane channels from conducting to blocked nonconducting state using polymers makes it possible to calibrate lipid pores. It is shown that low-molecular weight glycerol and PEG with molecular weights of 300 and 600 decrease the amplitude of current fluctuations through the membrane, the decrease being proportional to the size of the polymer molecule incorporated. The addition of PEG with molecular masses of 1450, 2000, and 3350 decrease the current fluctuations to the basal noise level. The result is considered as a complete blockade of ion channel conductivity. In the presence of rather large polymers, such as PEG with molecular masses of 6000 and 20000, which are hardly incorporated in the pore, single current fluctuations occur again; however, their amplitudes are somewhat smaller than in the absence of PEG. It is assumed that a complete blockade of the conductivity of lipid ionic channels by PEG with molecular masses of 1450, 2000, and 3350 is due to dehydration of the pore gap and the conversion of the hydrophilic pore to a hydrophobic one.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0006350908050126</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3509 |
ispartof | Biophysics (Oxford), 2008-10, Vol.53 (5), p.390-395 |
issn | 0006-3509 1555-6654 |
language | eng |
recordid | cdi_proquest_journals_232666189 |
source | Springer Nature |
subjects | Biological and Medical Physics Biophysics Cell Biophysics Lipids Membranes Molecular biology Permeability Physics Physics and Astronomy |
title | PEG blocking of single pores arising on phase transitions in unmodified lipid bilayers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PEG%20blocking%20of%20single%20pores%20arising%20on%20phase%20transitions%20in%20unmodified%20lipid%20bilayers&rft.jtitle=Biophysics%20(Oxford)&rft.au=Antonov,%20V.%20F.&rft.date=2008-10&rft.volume=53&rft.issue=5&rft.spage=390&rft.epage=395&rft.pages=390-395&rft.issn=0006-3509&rft.eissn=1555-6654&rft_id=info:doi/10.1134/S0006350908050126&rft_dat=%3Cproquest_cross%3E1896606351%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2306-e825e09eceeae4879352424f10fede6a7900f5f0a9d45e75be2ce0aae085e72e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=232666189&rft_id=info:pmid/&rfr_iscdi=true |