Loading…

Tunable neuronal scaffold biomaterials through plasmonic photo-patterning of aerogels

The authors have shown recently that the neurite extension by neuronal PC12 cells is greatly impacted by aerogel topography. Indeed, the average neurite length of PC-12 cells grown on aerogels is greater than that in cells cultured on control substrates. Here, the authors report on the first experim...

Full description

Saved in:
Bibliographic Details
Published in:MRS communications 2019-12, Vol.9 (4), p.1249-1255
Main Authors: Rodriguez Sala, Martina, Peng, Chenhui, Skalli, Omar, Sabri, Firouzeh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The authors have shown recently that the neurite extension by neuronal PC12 cells is greatly impacted by aerogel topography. Indeed, the average neurite length of PC-12 cells grown on aerogels is greater than that in cells cultured on control substrates. Here, the authors report on the first experimental study focused on the design and development of a plasmonic photo-patterning technique for collagen-coated mes-oporous aerogel biomaterials. Herein, the authors have produced specific patterns on silica aerogels by performing precise plasmonic photo-patterning on liquid crystal-coated aerogels. The authors report the methodology employed to create a collagen–liquid crystal gel mixture imprinted with precise plasmonic photo-patterns. PC12 cells plated on these patterns did attach and survive and followed the spatial cues of the pattern to align themselves in a similar pattern.
ISSN:2159-6859
2159-6867
DOI:10.1557/mrc.2019.143