Loading…

The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform

The Wigner-Ville distribution (WVD) and the quaternion offset linear canonical transform (QOLCT) are useful tools in signal analysis and image processing. The purpose of this paper is to define the Wigner-Ville distribution associated with the quaternionic offset linear canonical transform (WVD-QOLC...

Full description

Saved in:
Bibliographic Details
Published in:Analysis mathematica (Budapest) 2019-12, Vol.45 (4), p.787-802
Main Authors: El Kassimi, M., El Haoui, Y., Fahlaoui, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-66bef60b860ab36003ccdccc5deb0b6f0e90bcce723f0867c641e42fed7b3ede3
cites cdi_FETCH-LOGICAL-c316t-66bef60b860ab36003ccdccc5deb0b6f0e90bcce723f0867c641e42fed7b3ede3
container_end_page 802
container_issue 4
container_start_page 787
container_title Analysis mathematica (Budapest)
container_volume 45
creator El Kassimi, M.
El Haoui, Y.
Fahlaoui, S.
description The Wigner-Ville distribution (WVD) and the quaternion offset linear canonical transform (QOLCT) are useful tools in signal analysis and image processing. The purpose of this paper is to define the Wigner-Ville distribution associated with the quaternionic offset linear canonical transform (WVD-QOLCT). Actually, this transform combines both the results and flexibility of the two transforms WVD and QOLCT. We derive some important properties of this transform such as inversion and Plancherel formulas, we establish a version of the Heisenberg inequality, Lieb’s theorem and we give the Poisson summation formula for the WVD-QOLCT.
doi_str_mv 10.1007/s10476-019-0007-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2327537686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327537686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-66bef60b860ab36003ccdccc5deb0b6f0e90bcce723f0867c641e42fed7b3ede3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3Sy6Wa3x1I_oVCE-nEybLKTNmWbrcku4r83ZQVPnoaXed4ZeAi55HDNAYqbyGFSSAZ8yiBlBkdkxPOyZFkh3o_JCLgQTJR5dkrOYtwmZipLMSIfqw3SN7f2GNiraxqkty52wem-c62nsxhb46oOa_rlug3tEv3cpxz8Yb20NmJHF85jFei88q13pmroKlQ-2jbszsmJrZqIF79zTF7u71bzR7ZYPjzNZwtmBJcdk1KjlaBLCZUWEkAYUxtj8ho1aGkBp6CNwSITFkpZGDnhOMks1oUWWKMYk6vh7j60nz3GTm3bPvj0UmUiK3JRyFImig-UCW2MAa3aB7erwrfioA4a1aBRJY3qoFFB6mRDJybWrzH8Xf6_9AN01ncI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327537686</pqid></control><display><type>article</type><title>The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform</title><source>Springer Nature</source><creator>El Kassimi, M. ; El Haoui, Y. ; Fahlaoui, S.</creator><creatorcontrib>El Kassimi, M. ; El Haoui, Y. ; Fahlaoui, S.</creatorcontrib><description>The Wigner-Ville distribution (WVD) and the quaternion offset linear canonical transform (QOLCT) are useful tools in signal analysis and image processing. The purpose of this paper is to define the Wigner-Ville distribution associated with the quaternionic offset linear canonical transform (WVD-QOLCT). Actually, this transform combines both the results and flexibility of the two transforms WVD and QOLCT. We derive some important properties of this transform such as inversion and Plancherel formulas, we establish a version of the Heisenberg inequality, Lieb’s theorem and we give the Poisson summation formula for the WVD-QOLCT.</description><identifier>ISSN: 0133-3852</identifier><identifier>EISSN: 1588-273X</identifier><identifier>DOI: 10.1007/s10476-019-0007-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Image processing ; Mathematics ; Mathematics and Statistics ; Quaternions ; Signal analysis ; Signal processing</subject><ispartof>Analysis mathematica (Budapest), 2019-12, Vol.45 (4), p.787-802</ispartof><rights>Akadémiai Kiadó, Budapest 2019</rights><rights>Akadémiai Kiadó, Budapest 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-66bef60b860ab36003ccdccc5deb0b6f0e90bcce723f0867c641e42fed7b3ede3</citedby><cites>FETCH-LOGICAL-c316t-66bef60b860ab36003ccdccc5deb0b6f0e90bcce723f0867c641e42fed7b3ede3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>El Kassimi, M.</creatorcontrib><creatorcontrib>El Haoui, Y.</creatorcontrib><creatorcontrib>Fahlaoui, S.</creatorcontrib><title>The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform</title><title>Analysis mathematica (Budapest)</title><addtitle>Anal Math</addtitle><description>The Wigner-Ville distribution (WVD) and the quaternion offset linear canonical transform (QOLCT) are useful tools in signal analysis and image processing. The purpose of this paper is to define the Wigner-Ville distribution associated with the quaternionic offset linear canonical transform (WVD-QOLCT). Actually, this transform combines both the results and flexibility of the two transforms WVD and QOLCT. We derive some important properties of this transform such as inversion and Plancherel formulas, we establish a version of the Heisenberg inequality, Lieb’s theorem and we give the Poisson summation formula for the WVD-QOLCT.</description><subject>Analysis</subject><subject>Image processing</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Quaternions</subject><subject>Signal analysis</subject><subject>Signal processing</subject><issn>0133-3852</issn><issn>1588-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3Sy6Wa3x1I_oVCE-nEybLKTNmWbrcku4r83ZQVPnoaXed4ZeAi55HDNAYqbyGFSSAZ8yiBlBkdkxPOyZFkh3o_JCLgQTJR5dkrOYtwmZipLMSIfqw3SN7f2GNiraxqkty52wem-c62nsxhb46oOa_rlug3tEv3cpxz8Yb20NmJHF85jFei88q13pmroKlQ-2jbszsmJrZqIF79zTF7u71bzR7ZYPjzNZwtmBJcdk1KjlaBLCZUWEkAYUxtj8ho1aGkBp6CNwSITFkpZGDnhOMks1oUWWKMYk6vh7j60nz3GTm3bPvj0UmUiK3JRyFImig-UCW2MAa3aB7erwrfioA4a1aBRJY3qoFFB6mRDJybWrzH8Xf6_9AN01ncI</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>El Kassimi, M.</creator><creator>El Haoui, Y.</creator><creator>Fahlaoui, S.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform</title><author>El Kassimi, M. ; El Haoui, Y. ; Fahlaoui, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-66bef60b860ab36003ccdccc5deb0b6f0e90bcce723f0867c641e42fed7b3ede3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Image processing</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Quaternions</topic><topic>Signal analysis</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Kassimi, M.</creatorcontrib><creatorcontrib>El Haoui, Y.</creatorcontrib><creatorcontrib>Fahlaoui, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis mathematica (Budapest)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Kassimi, M.</au><au>El Haoui, Y.</au><au>Fahlaoui, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform</atitle><jtitle>Analysis mathematica (Budapest)</jtitle><stitle>Anal Math</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>45</volume><issue>4</issue><spage>787</spage><epage>802</epage><pages>787-802</pages><issn>0133-3852</issn><eissn>1588-273X</eissn><abstract>The Wigner-Ville distribution (WVD) and the quaternion offset linear canonical transform (QOLCT) are useful tools in signal analysis and image processing. The purpose of this paper is to define the Wigner-Ville distribution associated with the quaternionic offset linear canonical transform (WVD-QOLCT). Actually, this transform combines both the results and flexibility of the two transforms WVD and QOLCT. We derive some important properties of this transform such as inversion and Plancherel formulas, we establish a version of the Heisenberg inequality, Lieb’s theorem and we give the Poisson summation formula for the WVD-QOLCT.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10476-019-0007-0</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0133-3852
ispartof Analysis mathematica (Budapest), 2019-12, Vol.45 (4), p.787-802
issn 0133-3852
1588-273X
language eng
recordid cdi_proquest_journals_2327537686
source Springer Nature
subjects Analysis
Image processing
Mathematics
Mathematics and Statistics
Quaternions
Signal analysis
Signal processing
title The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Wigner-Ville%20Distribution%20Associated%20with%20the%20Quaternion%20Offset%20Linear%20Canonical%20Transform&rft.jtitle=Analysis%20mathematica%20(Budapest)&rft.au=El%20Kassimi,%20M.&rft.date=2019-12-01&rft.volume=45&rft.issue=4&rft.spage=787&rft.epage=802&rft.pages=787-802&rft.issn=0133-3852&rft.eissn=1588-273X&rft_id=info:doi/10.1007/s10476-019-0007-0&rft_dat=%3Cproquest_cross%3E2327537686%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-66bef60b860ab36003ccdccc5deb0b6f0e90bcce723f0867c641e42fed7b3ede3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2327537686&rft_id=info:pmid/&rfr_iscdi=true