Loading…
The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform
The Wigner-Ville distribution (WVD) and the quaternion offset linear canonical transform (QOLCT) are useful tools in signal analysis and image processing. The purpose of this paper is to define the Wigner-Ville distribution associated with the quaternionic offset linear canonical transform (WVD-QOLC...
Saved in:
Published in: | Analysis mathematica (Budapest) 2019-12, Vol.45 (4), p.787-802 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-66bef60b860ab36003ccdccc5deb0b6f0e90bcce723f0867c641e42fed7b3ede3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-66bef60b860ab36003ccdccc5deb0b6f0e90bcce723f0867c641e42fed7b3ede3 |
container_end_page | 802 |
container_issue | 4 |
container_start_page | 787 |
container_title | Analysis mathematica (Budapest) |
container_volume | 45 |
creator | El Kassimi, M. El Haoui, Y. Fahlaoui, S. |
description | The Wigner-Ville distribution (WVD) and the quaternion offset linear canonical transform (QOLCT) are useful tools in signal analysis and image processing. The purpose of this paper is to define the Wigner-Ville distribution associated with the quaternionic offset linear canonical transform (WVD-QOLCT). Actually, this transform combines both the results and flexibility of the two transforms WVD and QOLCT. We derive some important properties of this transform such as inversion and Plancherel formulas, we establish a version of the Heisenberg inequality, Lieb’s theorem and we give the Poisson summation formula for the WVD-QOLCT. |
doi_str_mv | 10.1007/s10476-019-0007-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2327537686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327537686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-66bef60b860ab36003ccdccc5deb0b6f0e90bcce723f0867c641e42fed7b3ede3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3Sy6Wa3x1I_oVCE-nEybLKTNmWbrcku4r83ZQVPnoaXed4ZeAi55HDNAYqbyGFSSAZ8yiBlBkdkxPOyZFkh3o_JCLgQTJR5dkrOYtwmZipLMSIfqw3SN7f2GNiraxqkty52wem-c62nsxhb46oOa_rlug3tEv3cpxz8Yb20NmJHF85jFei88q13pmroKlQ-2jbszsmJrZqIF79zTF7u71bzR7ZYPjzNZwtmBJcdk1KjlaBLCZUWEkAYUxtj8ho1aGkBp6CNwSITFkpZGDnhOMks1oUWWKMYk6vh7j60nz3GTm3bPvj0UmUiK3JRyFImig-UCW2MAa3aB7erwrfioA4a1aBRJY3qoFFB6mRDJybWrzH8Xf6_9AN01ncI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327537686</pqid></control><display><type>article</type><title>The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform</title><source>Springer Nature</source><creator>El Kassimi, M. ; El Haoui, Y. ; Fahlaoui, S.</creator><creatorcontrib>El Kassimi, M. ; El Haoui, Y. ; Fahlaoui, S.</creatorcontrib><description>The Wigner-Ville distribution (WVD) and the quaternion offset linear canonical transform (QOLCT) are useful tools in signal analysis and image processing. The purpose of this paper is to define the Wigner-Ville distribution associated with the quaternionic offset linear canonical transform (WVD-QOLCT). Actually, this transform combines both the results and flexibility of the two transforms WVD and QOLCT. We derive some important properties of this transform such as inversion and Plancherel formulas, we establish a version of the Heisenberg inequality, Lieb’s theorem and we give the Poisson summation formula for the WVD-QOLCT.</description><identifier>ISSN: 0133-3852</identifier><identifier>EISSN: 1588-273X</identifier><identifier>DOI: 10.1007/s10476-019-0007-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Image processing ; Mathematics ; Mathematics and Statistics ; Quaternions ; Signal analysis ; Signal processing</subject><ispartof>Analysis mathematica (Budapest), 2019-12, Vol.45 (4), p.787-802</ispartof><rights>Akadémiai Kiadó, Budapest 2019</rights><rights>Akadémiai Kiadó, Budapest 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-66bef60b860ab36003ccdccc5deb0b6f0e90bcce723f0867c641e42fed7b3ede3</citedby><cites>FETCH-LOGICAL-c316t-66bef60b860ab36003ccdccc5deb0b6f0e90bcce723f0867c641e42fed7b3ede3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>El Kassimi, M.</creatorcontrib><creatorcontrib>El Haoui, Y.</creatorcontrib><creatorcontrib>Fahlaoui, S.</creatorcontrib><title>The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform</title><title>Analysis mathematica (Budapest)</title><addtitle>Anal Math</addtitle><description>The Wigner-Ville distribution (WVD) and the quaternion offset linear canonical transform (QOLCT) are useful tools in signal analysis and image processing. The purpose of this paper is to define the Wigner-Ville distribution associated with the quaternionic offset linear canonical transform (WVD-QOLCT). Actually, this transform combines both the results and flexibility of the two transforms WVD and QOLCT. We derive some important properties of this transform such as inversion and Plancherel formulas, we establish a version of the Heisenberg inequality, Lieb’s theorem and we give the Poisson summation formula for the WVD-QOLCT.</description><subject>Analysis</subject><subject>Image processing</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Quaternions</subject><subject>Signal analysis</subject><subject>Signal processing</subject><issn>0133-3852</issn><issn>1588-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3Sy6Wa3x1I_oVCE-nEybLKTNmWbrcku4r83ZQVPnoaXed4ZeAi55HDNAYqbyGFSSAZ8yiBlBkdkxPOyZFkh3o_JCLgQTJR5dkrOYtwmZipLMSIfqw3SN7f2GNiraxqkty52wem-c62nsxhb46oOa_rlug3tEv3cpxz8Yb20NmJHF85jFei88q13pmroKlQ-2jbszsmJrZqIF79zTF7u71bzR7ZYPjzNZwtmBJcdk1KjlaBLCZUWEkAYUxtj8ho1aGkBp6CNwSITFkpZGDnhOMks1oUWWKMYk6vh7j60nz3GTm3bPvj0UmUiK3JRyFImig-UCW2MAa3aB7erwrfioA4a1aBRJY3qoFFB6mRDJybWrzH8Xf6_9AN01ncI</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>El Kassimi, M.</creator><creator>El Haoui, Y.</creator><creator>Fahlaoui, S.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform</title><author>El Kassimi, M. ; El Haoui, Y. ; Fahlaoui, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-66bef60b860ab36003ccdccc5deb0b6f0e90bcce723f0867c641e42fed7b3ede3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Image processing</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Quaternions</topic><topic>Signal analysis</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Kassimi, M.</creatorcontrib><creatorcontrib>El Haoui, Y.</creatorcontrib><creatorcontrib>Fahlaoui, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis mathematica (Budapest)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Kassimi, M.</au><au>El Haoui, Y.</au><au>Fahlaoui, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform</atitle><jtitle>Analysis mathematica (Budapest)</jtitle><stitle>Anal Math</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>45</volume><issue>4</issue><spage>787</spage><epage>802</epage><pages>787-802</pages><issn>0133-3852</issn><eissn>1588-273X</eissn><abstract>The Wigner-Ville distribution (WVD) and the quaternion offset linear canonical transform (QOLCT) are useful tools in signal analysis and image processing. The purpose of this paper is to define the Wigner-Ville distribution associated with the quaternionic offset linear canonical transform (WVD-QOLCT). Actually, this transform combines both the results and flexibility of the two transforms WVD and QOLCT. We derive some important properties of this transform such as inversion and Plancherel formulas, we establish a version of the Heisenberg inequality, Lieb’s theorem and we give the Poisson summation formula for the WVD-QOLCT.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10476-019-0007-0</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0133-3852 |
ispartof | Analysis mathematica (Budapest), 2019-12, Vol.45 (4), p.787-802 |
issn | 0133-3852 1588-273X |
language | eng |
recordid | cdi_proquest_journals_2327537686 |
source | Springer Nature |
subjects | Analysis Image processing Mathematics Mathematics and Statistics Quaternions Signal analysis Signal processing |
title | The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Wigner-Ville%20Distribution%20Associated%20with%20the%20Quaternion%20Offset%20Linear%20Canonical%20Transform&rft.jtitle=Analysis%20mathematica%20(Budapest)&rft.au=El%20Kassimi,%20M.&rft.date=2019-12-01&rft.volume=45&rft.issue=4&rft.spage=787&rft.epage=802&rft.pages=787-802&rft.issn=0133-3852&rft.eissn=1588-273X&rft_id=info:doi/10.1007/s10476-019-0007-0&rft_dat=%3Cproquest_cross%3E2327537686%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-66bef60b860ab36003ccdccc5deb0b6f0e90bcce723f0867c641e42fed7b3ede3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2327537686&rft_id=info:pmid/&rfr_iscdi=true |