Loading…
Neuromorphic adaptive control of hybrid processing on CNC machines
The paper considers the possibility of using neuromorphic controllers in adaptive control systems of cyber- physical hybrid processing systems, including 3D printing and subsequent mechanical processing. The application of the Big Data and machine learning technologies for obtaining “digital twins”...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2188 |
creator | Kabaldin, Y. G. Shatagin, D. A. Kolchin, P. V. Galkin, A. A. |
description | The paper considers the possibility of using neuromorphic controllers in adaptive control systems of cyber- physical hybrid processing systems, including 3D printing and subsequent mechanical processing. The application of the Big Data and machine learning technologies for obtaining “digital twins” of hybrid processing is shown. A hardware implementation of “digital twins” of a cyber-physical system as part of a neuromorphic controller as part of automatic control of technological processes on CNC machines is proposed. |
doi_str_mv | 10.1063/1.5138388 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2327638958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327638958</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2038-f7eb4e8571cfd91da485d2d8ea31bdf3672c7486ca80794c56b058443998ddd43</originalsourceid><addsrcrecordid>eNp9kElLAzEAhYMoWKsH_0HAmzA1-3LUwQ1KvSh4C5kkY1PayZhMC_33jrTgzdO7fG_hAXCN0QwjQe_wjGOqqFInYII5x5UUWJyCCUKaVYTRz3NwUcoKIaKlVBPwsAjbnDYp98vooPW2H-IuQJe6Iac1TC1c7pscPexzcqGU2H3B1MF6UcONdcvYhXIJzlq7LuHqqFPw8fT4Xr9U87fn1_p-XvUEUVW1MjQsKC6xa73G3jLFPfEqWIob31IhiZNMCWcVkpo5LhrEFWNUa-W9Z3QKbg6545TvbSiDWaVt7sZKQyiRgirN1UjdHqji4mCHmDrT57ixeW92KRtsjv-Yfuz8B8bI_B76Z6A_rllm6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2327638958</pqid></control><display><type>conference_proceeding</type><title>Neuromorphic adaptive control of hybrid processing on CNC machines</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Kabaldin, Y. G. ; Shatagin, D. A. ; Kolchin, P. V. ; Galkin, A. A.</creator><contributor>Mladenovic, Vladimir ; Petkovic, Marko ; Najafabadi, Tooraj Abbasian ; Tung, Pham Dinh ; Sevostyanov, Igor B.</contributor><creatorcontrib>Kabaldin, Y. G. ; Shatagin, D. A. ; Kolchin, P. V. ; Galkin, A. A. ; Mladenovic, Vladimir ; Petkovic, Marko ; Najafabadi, Tooraj Abbasian ; Tung, Pham Dinh ; Sevostyanov, Igor B.</creatorcontrib><description>The paper considers the possibility of using neuromorphic controllers in adaptive control systems of cyber- physical hybrid processing systems, including 3D printing and subsequent mechanical processing. The application of the Big Data and machine learning technologies for obtaining “digital twins” of hybrid processing is shown. A hardware implementation of “digital twins” of a cyber-physical system as part of a neuromorphic controller as part of automatic control of technological processes on CNC machines is proposed.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5138388</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adaptive control ; Automatic control ; Hybrid systems ; Machine learning ; Three dimensional printing</subject><ispartof>AIP conference proceedings, 2019, Vol.2188 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Mladenovic, Vladimir</contributor><contributor>Petkovic, Marko</contributor><contributor>Najafabadi, Tooraj Abbasian</contributor><contributor>Tung, Pham Dinh</contributor><contributor>Sevostyanov, Igor B.</contributor><creatorcontrib>Kabaldin, Y. G.</creatorcontrib><creatorcontrib>Shatagin, D. A.</creatorcontrib><creatorcontrib>Kolchin, P. V.</creatorcontrib><creatorcontrib>Galkin, A. A.</creatorcontrib><title>Neuromorphic adaptive control of hybrid processing on CNC machines</title><title>AIP conference proceedings</title><description>The paper considers the possibility of using neuromorphic controllers in adaptive control systems of cyber- physical hybrid processing systems, including 3D printing and subsequent mechanical processing. The application of the Big Data and machine learning technologies for obtaining “digital twins” of hybrid processing is shown. A hardware implementation of “digital twins” of a cyber-physical system as part of a neuromorphic controller as part of automatic control of technological processes on CNC machines is proposed.</description><subject>Adaptive control</subject><subject>Automatic control</subject><subject>Hybrid systems</subject><subject>Machine learning</subject><subject>Three dimensional printing</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kElLAzEAhYMoWKsH_0HAmzA1-3LUwQ1KvSh4C5kkY1PayZhMC_33jrTgzdO7fG_hAXCN0QwjQe_wjGOqqFInYII5x5UUWJyCCUKaVYTRz3NwUcoKIaKlVBPwsAjbnDYp98vooPW2H-IuQJe6Iac1TC1c7pscPexzcqGU2H3B1MF6UcONdcvYhXIJzlq7LuHqqFPw8fT4Xr9U87fn1_p-XvUEUVW1MjQsKC6xa73G3jLFPfEqWIob31IhiZNMCWcVkpo5LhrEFWNUa-W9Z3QKbg6545TvbSiDWaVt7sZKQyiRgirN1UjdHqji4mCHmDrT57ixeW92KRtsjv-Yfuz8B8bI_B76Z6A_rllm6A</recordid><startdate>20191217</startdate><enddate>20191217</enddate><creator>Kabaldin, Y. G.</creator><creator>Shatagin, D. A.</creator><creator>Kolchin, P. V.</creator><creator>Galkin, A. A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20191217</creationdate><title>Neuromorphic adaptive control of hybrid processing on CNC machines</title><author>Kabaldin, Y. G. ; Shatagin, D. A. ; Kolchin, P. V. ; Galkin, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2038-f7eb4e8571cfd91da485d2d8ea31bdf3672c7486ca80794c56b058443998ddd43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive control</topic><topic>Automatic control</topic><topic>Hybrid systems</topic><topic>Machine learning</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabaldin, Y. G.</creatorcontrib><creatorcontrib>Shatagin, D. A.</creatorcontrib><creatorcontrib>Kolchin, P. V.</creatorcontrib><creatorcontrib>Galkin, A. A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabaldin, Y. G.</au><au>Shatagin, D. A.</au><au>Kolchin, P. V.</au><au>Galkin, A. A.</au><au>Mladenovic, Vladimir</au><au>Petkovic, Marko</au><au>Najafabadi, Tooraj Abbasian</au><au>Tung, Pham Dinh</au><au>Sevostyanov, Igor B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neuromorphic adaptive control of hybrid processing on CNC machines</atitle><btitle>AIP conference proceedings</btitle><date>2019-12-17</date><risdate>2019</risdate><volume>2188</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The paper considers the possibility of using neuromorphic controllers in adaptive control systems of cyber- physical hybrid processing systems, including 3D printing and subsequent mechanical processing. The application of the Big Data and machine learning technologies for obtaining “digital twins” of hybrid processing is shown. A hardware implementation of “digital twins” of a cyber-physical system as part of a neuromorphic controller as part of automatic control of technological processes on CNC machines is proposed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5138388</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2019, Vol.2188 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2327638958 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Adaptive control Automatic control Hybrid systems Machine learning Three dimensional printing |
title | Neuromorphic adaptive control of hybrid processing on CNC machines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neuromorphic%20adaptive%20control%20of%20hybrid%20processing%20on%20CNC%20machines&rft.btitle=AIP%20conference%20proceedings&rft.au=Kabaldin,%20Y.%20G.&rft.date=2019-12-17&rft.volume=2188&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5138388&rft_dat=%3Cproquest_scita%3E2327638958%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2038-f7eb4e8571cfd91da485d2d8ea31bdf3672c7486ca80794c56b058443998ddd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2327638958&rft_id=info:pmid/&rfr_iscdi=true |