Loading…

PODDP: Partially Observable Differential Dynamic Programming for Latent Belief Space Planning

Autonomous agents are limited in their ability to observe the world state. Partially observable Markov decision processes (POMDPs) formally model the problem of planning under world state uncertainty, but POMDPs with continuous actions and nonlinear dynamics suitable for robotics applications are ch...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-12
Main Authors: Qiu, Dicong, Zhao, Yibiao, Baker, Chris L
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Qiu, Dicong
Zhao, Yibiao
Baker, Chris L
description Autonomous agents are limited in their ability to observe the world state. Partially observable Markov decision processes (POMDPs) formally model the problem of planning under world state uncertainty, but POMDPs with continuous actions and nonlinear dynamics suitable for robotics applications are challenging to solve. In this paper, we present an efficient differential dynamic programming (DDP) algorithm for belief space planning in POMDPs with uncertainty over a discrete latent state, and continuous states, actions, observations, and nonlinear dynamics. This representation allows planning of dynamic trajectories which are sensitive to structured uncertainty over discrete latent world states. We develop dynamic programming techniques to optimize a contingency plan over a tree of possible observations and belief space trajectories, and also derive a hierarchical version of the algorithm. Our method is applicable to problems with uncertainty over the cost or reward function (e.g., the configuration of goals or obstacles), uncertainty over the dynamics (e.g., the dynamical mode of a hybrid system), and uncertainty about interactions, where other agents' behavior is conditioned on latent intentions. Benchmarks show that our algorithm outperforms popular heuristic approaches to planning under uncertainty, and results from an autonomous lane changing task demonstrate that our algorithm can synthesize robust interactive trajectories.
doi_str_mv 10.48550/arxiv.1912.06787
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2327673858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327673858</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-956cfad96a805b2f22cd1f1c78ed4076dc317d5f9f9781f86dade7240213a3213</originalsourceid><addsrcrecordid>eNotjc1Kw0AYRQdBsNQ-gLsB14kz32R-4k4brUIgAbuV8iUzU1LyUydpsW9vRDf3LO7hXkLuOIsTIyV7wPDdnGOecoiZ0kZfkQUIwSOTANyQ1TgeGGOgNEgpFuSzLLKsfKQlhqnBtr3QohpdOGPVOpo13rvg-t-GZpceu6amZRj2Abuu6ffUD4HmOM0GfXZt4zz9OGLtaNli38_CLbn22I5u9c8l2b6-bNdvUV5s3tdPeYQSTJRKVXu0qULDZAUeoLbc81obZxOmla0F11b61KfacG-URes0JAy4QDHHktz_zR7D8HVy47Q7DKfQz487EKCVFkYa8QNyDVSr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327673858</pqid></control><display><type>article</type><title>PODDP: Partially Observable Differential Dynamic Programming for Latent Belief Space Planning</title><source>Publicly Available Content (ProQuest)</source><creator>Qiu, Dicong ; Zhao, Yibiao ; Baker, Chris L</creator><creatorcontrib>Qiu, Dicong ; Zhao, Yibiao ; Baker, Chris L</creatorcontrib><description>Autonomous agents are limited in their ability to observe the world state. Partially observable Markov decision processes (POMDPs) formally model the problem of planning under world state uncertainty, but POMDPs with continuous actions and nonlinear dynamics suitable for robotics applications are challenging to solve. In this paper, we present an efficient differential dynamic programming (DDP) algorithm for belief space planning in POMDPs with uncertainty over a discrete latent state, and continuous states, actions, observations, and nonlinear dynamics. This representation allows planning of dynamic trajectories which are sensitive to structured uncertainty over discrete latent world states. We develop dynamic programming techniques to optimize a contingency plan over a tree of possible observations and belief space trajectories, and also derive a hierarchical version of the algorithm. Our method is applicable to problems with uncertainty over the cost or reward function (e.g., the configuration of goals or obstacles), uncertainty over the dynamics (e.g., the dynamical mode of a hybrid system), and uncertainty about interactions, where other agents' behavior is conditioned on latent intentions. Benchmarks show that our algorithm outperforms popular heuristic approaches to planning under uncertainty, and results from an autonomous lane changing task demonstrate that our algorithm can synthesize robust interactive trajectories.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1912.06787</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Contingency ; Dynamic programming ; Dynamical systems ; Hybrid systems ; Lane changing ; Markov processes ; Nonlinear dynamics ; Planning ; Robotics ; Trajectory planning ; Uncertainty</subject><ispartof>arXiv.org, 2019-12</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2327673858?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Qiu, Dicong</creatorcontrib><creatorcontrib>Zhao, Yibiao</creatorcontrib><creatorcontrib>Baker, Chris L</creatorcontrib><title>PODDP: Partially Observable Differential Dynamic Programming for Latent Belief Space Planning</title><title>arXiv.org</title><description>Autonomous agents are limited in their ability to observe the world state. Partially observable Markov decision processes (POMDPs) formally model the problem of planning under world state uncertainty, but POMDPs with continuous actions and nonlinear dynamics suitable for robotics applications are challenging to solve. In this paper, we present an efficient differential dynamic programming (DDP) algorithm for belief space planning in POMDPs with uncertainty over a discrete latent state, and continuous states, actions, observations, and nonlinear dynamics. This representation allows planning of dynamic trajectories which are sensitive to structured uncertainty over discrete latent world states. We develop dynamic programming techniques to optimize a contingency plan over a tree of possible observations and belief space trajectories, and also derive a hierarchical version of the algorithm. Our method is applicable to problems with uncertainty over the cost or reward function (e.g., the configuration of goals or obstacles), uncertainty over the dynamics (e.g., the dynamical mode of a hybrid system), and uncertainty about interactions, where other agents' behavior is conditioned on latent intentions. Benchmarks show that our algorithm outperforms popular heuristic approaches to planning under uncertainty, and results from an autonomous lane changing task demonstrate that our algorithm can synthesize robust interactive trajectories.</description><subject>Algorithms</subject><subject>Contingency</subject><subject>Dynamic programming</subject><subject>Dynamical systems</subject><subject>Hybrid systems</subject><subject>Lane changing</subject><subject>Markov processes</subject><subject>Nonlinear dynamics</subject><subject>Planning</subject><subject>Robotics</subject><subject>Trajectory planning</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc1Kw0AYRQdBsNQ-gLsB14kz32R-4k4brUIgAbuV8iUzU1LyUydpsW9vRDf3LO7hXkLuOIsTIyV7wPDdnGOecoiZ0kZfkQUIwSOTANyQ1TgeGGOgNEgpFuSzLLKsfKQlhqnBtr3QohpdOGPVOpo13rvg-t-GZpceu6amZRj2Abuu6ffUD4HmOM0GfXZt4zz9OGLtaNli38_CLbn22I5u9c8l2b6-bNdvUV5s3tdPeYQSTJRKVXu0qULDZAUeoLbc81obZxOmla0F11b61KfacG-URes0JAy4QDHHktz_zR7D8HVy47Q7DKfQz487EKCVFkYa8QNyDVSr</recordid><startdate>20191214</startdate><enddate>20191214</enddate><creator>Qiu, Dicong</creator><creator>Zhao, Yibiao</creator><creator>Baker, Chris L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191214</creationdate><title>PODDP: Partially Observable Differential Dynamic Programming for Latent Belief Space Planning</title><author>Qiu, Dicong ; Zhao, Yibiao ; Baker, Chris L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-956cfad96a805b2f22cd1f1c78ed4076dc317d5f9f9781f86dade7240213a3213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Contingency</topic><topic>Dynamic programming</topic><topic>Dynamical systems</topic><topic>Hybrid systems</topic><topic>Lane changing</topic><topic>Markov processes</topic><topic>Nonlinear dynamics</topic><topic>Planning</topic><topic>Robotics</topic><topic>Trajectory planning</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Dicong</creatorcontrib><creatorcontrib>Zhao, Yibiao</creatorcontrib><creatorcontrib>Baker, Chris L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Dicong</au><au>Zhao, Yibiao</au><au>Baker, Chris L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PODDP: Partially Observable Differential Dynamic Programming for Latent Belief Space Planning</atitle><jtitle>arXiv.org</jtitle><date>2019-12-14</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Autonomous agents are limited in their ability to observe the world state. Partially observable Markov decision processes (POMDPs) formally model the problem of planning under world state uncertainty, but POMDPs with continuous actions and nonlinear dynamics suitable for robotics applications are challenging to solve. In this paper, we present an efficient differential dynamic programming (DDP) algorithm for belief space planning in POMDPs with uncertainty over a discrete latent state, and continuous states, actions, observations, and nonlinear dynamics. This representation allows planning of dynamic trajectories which are sensitive to structured uncertainty over discrete latent world states. We develop dynamic programming techniques to optimize a contingency plan over a tree of possible observations and belief space trajectories, and also derive a hierarchical version of the algorithm. Our method is applicable to problems with uncertainty over the cost or reward function (e.g., the configuration of goals or obstacles), uncertainty over the dynamics (e.g., the dynamical mode of a hybrid system), and uncertainty about interactions, where other agents' behavior is conditioned on latent intentions. Benchmarks show that our algorithm outperforms popular heuristic approaches to planning under uncertainty, and results from an autonomous lane changing task demonstrate that our algorithm can synthesize robust interactive trajectories.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1912.06787</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2327673858
source Publicly Available Content (ProQuest)
subjects Algorithms
Contingency
Dynamic programming
Dynamical systems
Hybrid systems
Lane changing
Markov processes
Nonlinear dynamics
Planning
Robotics
Trajectory planning
Uncertainty
title PODDP: Partially Observable Differential Dynamic Programming for Latent Belief Space Planning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PODDP:%20Partially%20Observable%20Differential%20Dynamic%20Programming%20for%20Latent%20Belief%20Space%20Planning&rft.jtitle=arXiv.org&rft.au=Qiu,%20Dicong&rft.date=2019-12-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1912.06787&rft_dat=%3Cproquest%3E2327673858%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-956cfad96a805b2f22cd1f1c78ed4076dc317d5f9f9781f86dade7240213a3213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2327673858&rft_id=info:pmid/&rfr_iscdi=true