Loading…
PODDP: Partially Observable Differential Dynamic Programming for Latent Belief Space Planning
Autonomous agents are limited in their ability to observe the world state. Partially observable Markov decision processes (POMDPs) formally model the problem of planning under world state uncertainty, but POMDPs with continuous actions and nonlinear dynamics suitable for robotics applications are ch...
Saved in:
Published in: | arXiv.org 2019-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Qiu, Dicong Zhao, Yibiao Baker, Chris L |
description | Autonomous agents are limited in their ability to observe the world state. Partially observable Markov decision processes (POMDPs) formally model the problem of planning under world state uncertainty, but POMDPs with continuous actions and nonlinear dynamics suitable for robotics applications are challenging to solve. In this paper, we present an efficient differential dynamic programming (DDP) algorithm for belief space planning in POMDPs with uncertainty over a discrete latent state, and continuous states, actions, observations, and nonlinear dynamics. This representation allows planning of dynamic trajectories which are sensitive to structured uncertainty over discrete latent world states. We develop dynamic programming techniques to optimize a contingency plan over a tree of possible observations and belief space trajectories, and also derive a hierarchical version of the algorithm. Our method is applicable to problems with uncertainty over the cost or reward function (e.g., the configuration of goals or obstacles), uncertainty over the dynamics (e.g., the dynamical mode of a hybrid system), and uncertainty about interactions, where other agents' behavior is conditioned on latent intentions. Benchmarks show that our algorithm outperforms popular heuristic approaches to planning under uncertainty, and results from an autonomous lane changing task demonstrate that our algorithm can synthesize robust interactive trajectories. |
doi_str_mv | 10.48550/arxiv.1912.06787 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2327673858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327673858</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-956cfad96a805b2f22cd1f1c78ed4076dc317d5f9f9781f86dade7240213a3213</originalsourceid><addsrcrecordid>eNotjc1Kw0AYRQdBsNQ-gLsB14kz32R-4k4brUIgAbuV8iUzU1LyUydpsW9vRDf3LO7hXkLuOIsTIyV7wPDdnGOecoiZ0kZfkQUIwSOTANyQ1TgeGGOgNEgpFuSzLLKsfKQlhqnBtr3QohpdOGPVOpo13rvg-t-GZpceu6amZRj2Abuu6ffUD4HmOM0GfXZt4zz9OGLtaNli38_CLbn22I5u9c8l2b6-bNdvUV5s3tdPeYQSTJRKVXu0qULDZAUeoLbc81obZxOmla0F11b61KfacG-URes0JAy4QDHHktz_zR7D8HVy47Q7DKfQz487EKCVFkYa8QNyDVSr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327673858</pqid></control><display><type>article</type><title>PODDP: Partially Observable Differential Dynamic Programming for Latent Belief Space Planning</title><source>Publicly Available Content (ProQuest)</source><creator>Qiu, Dicong ; Zhao, Yibiao ; Baker, Chris L</creator><creatorcontrib>Qiu, Dicong ; Zhao, Yibiao ; Baker, Chris L</creatorcontrib><description>Autonomous agents are limited in their ability to observe the world state. Partially observable Markov decision processes (POMDPs) formally model the problem of planning under world state uncertainty, but POMDPs with continuous actions and nonlinear dynamics suitable for robotics applications are challenging to solve. In this paper, we present an efficient differential dynamic programming (DDP) algorithm for belief space planning in POMDPs with uncertainty over a discrete latent state, and continuous states, actions, observations, and nonlinear dynamics. This representation allows planning of dynamic trajectories which are sensitive to structured uncertainty over discrete latent world states. We develop dynamic programming techniques to optimize a contingency plan over a tree of possible observations and belief space trajectories, and also derive a hierarchical version of the algorithm. Our method is applicable to problems with uncertainty over the cost or reward function (e.g., the configuration of goals or obstacles), uncertainty over the dynamics (e.g., the dynamical mode of a hybrid system), and uncertainty about interactions, where other agents' behavior is conditioned on latent intentions. Benchmarks show that our algorithm outperforms popular heuristic approaches to planning under uncertainty, and results from an autonomous lane changing task demonstrate that our algorithm can synthesize robust interactive trajectories.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1912.06787</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Contingency ; Dynamic programming ; Dynamical systems ; Hybrid systems ; Lane changing ; Markov processes ; Nonlinear dynamics ; Planning ; Robotics ; Trajectory planning ; Uncertainty</subject><ispartof>arXiv.org, 2019-12</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2327673858?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Qiu, Dicong</creatorcontrib><creatorcontrib>Zhao, Yibiao</creatorcontrib><creatorcontrib>Baker, Chris L</creatorcontrib><title>PODDP: Partially Observable Differential Dynamic Programming for Latent Belief Space Planning</title><title>arXiv.org</title><description>Autonomous agents are limited in their ability to observe the world state. Partially observable Markov decision processes (POMDPs) formally model the problem of planning under world state uncertainty, but POMDPs with continuous actions and nonlinear dynamics suitable for robotics applications are challenging to solve. In this paper, we present an efficient differential dynamic programming (DDP) algorithm for belief space planning in POMDPs with uncertainty over a discrete latent state, and continuous states, actions, observations, and nonlinear dynamics. This representation allows planning of dynamic trajectories which are sensitive to structured uncertainty over discrete latent world states. We develop dynamic programming techniques to optimize a contingency plan over a tree of possible observations and belief space trajectories, and also derive a hierarchical version of the algorithm. Our method is applicable to problems with uncertainty over the cost or reward function (e.g., the configuration of goals or obstacles), uncertainty over the dynamics (e.g., the dynamical mode of a hybrid system), and uncertainty about interactions, where other agents' behavior is conditioned on latent intentions. Benchmarks show that our algorithm outperforms popular heuristic approaches to planning under uncertainty, and results from an autonomous lane changing task demonstrate that our algorithm can synthesize robust interactive trajectories.</description><subject>Algorithms</subject><subject>Contingency</subject><subject>Dynamic programming</subject><subject>Dynamical systems</subject><subject>Hybrid systems</subject><subject>Lane changing</subject><subject>Markov processes</subject><subject>Nonlinear dynamics</subject><subject>Planning</subject><subject>Robotics</subject><subject>Trajectory planning</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc1Kw0AYRQdBsNQ-gLsB14kz32R-4k4brUIgAbuV8iUzU1LyUydpsW9vRDf3LO7hXkLuOIsTIyV7wPDdnGOecoiZ0kZfkQUIwSOTANyQ1TgeGGOgNEgpFuSzLLKsfKQlhqnBtr3QohpdOGPVOpo13rvg-t-GZpceu6amZRj2Abuu6ffUD4HmOM0GfXZt4zz9OGLtaNli38_CLbn22I5u9c8l2b6-bNdvUV5s3tdPeYQSTJRKVXu0qULDZAUeoLbc81obZxOmla0F11b61KfacG-URes0JAy4QDHHktz_zR7D8HVy47Q7DKfQz487EKCVFkYa8QNyDVSr</recordid><startdate>20191214</startdate><enddate>20191214</enddate><creator>Qiu, Dicong</creator><creator>Zhao, Yibiao</creator><creator>Baker, Chris L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191214</creationdate><title>PODDP: Partially Observable Differential Dynamic Programming for Latent Belief Space Planning</title><author>Qiu, Dicong ; Zhao, Yibiao ; Baker, Chris L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-956cfad96a805b2f22cd1f1c78ed4076dc317d5f9f9781f86dade7240213a3213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Contingency</topic><topic>Dynamic programming</topic><topic>Dynamical systems</topic><topic>Hybrid systems</topic><topic>Lane changing</topic><topic>Markov processes</topic><topic>Nonlinear dynamics</topic><topic>Planning</topic><topic>Robotics</topic><topic>Trajectory planning</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Dicong</creatorcontrib><creatorcontrib>Zhao, Yibiao</creatorcontrib><creatorcontrib>Baker, Chris L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Dicong</au><au>Zhao, Yibiao</au><au>Baker, Chris L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PODDP: Partially Observable Differential Dynamic Programming for Latent Belief Space Planning</atitle><jtitle>arXiv.org</jtitle><date>2019-12-14</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Autonomous agents are limited in their ability to observe the world state. Partially observable Markov decision processes (POMDPs) formally model the problem of planning under world state uncertainty, but POMDPs with continuous actions and nonlinear dynamics suitable for robotics applications are challenging to solve. In this paper, we present an efficient differential dynamic programming (DDP) algorithm for belief space planning in POMDPs with uncertainty over a discrete latent state, and continuous states, actions, observations, and nonlinear dynamics. This representation allows planning of dynamic trajectories which are sensitive to structured uncertainty over discrete latent world states. We develop dynamic programming techniques to optimize a contingency plan over a tree of possible observations and belief space trajectories, and also derive a hierarchical version of the algorithm. Our method is applicable to problems with uncertainty over the cost or reward function (e.g., the configuration of goals or obstacles), uncertainty over the dynamics (e.g., the dynamical mode of a hybrid system), and uncertainty about interactions, where other agents' behavior is conditioned on latent intentions. Benchmarks show that our algorithm outperforms popular heuristic approaches to planning under uncertainty, and results from an autonomous lane changing task demonstrate that our algorithm can synthesize robust interactive trajectories.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1912.06787</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2327673858 |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Contingency Dynamic programming Dynamical systems Hybrid systems Lane changing Markov processes Nonlinear dynamics Planning Robotics Trajectory planning Uncertainty |
title | PODDP: Partially Observable Differential Dynamic Programming for Latent Belief Space Planning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PODDP:%20Partially%20Observable%20Differential%20Dynamic%20Programming%20for%20Latent%20Belief%20Space%20Planning&rft.jtitle=arXiv.org&rft.au=Qiu,%20Dicong&rft.date=2019-12-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1912.06787&rft_dat=%3Cproquest%3E2327673858%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-956cfad96a805b2f22cd1f1c78ed4076dc317d5f9f9781f86dade7240213a3213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2327673858&rft_id=info:pmid/&rfr_iscdi=true |