Loading…

CO oxidation and the inhibition effects of carboxyl-modification and copper clusters on multi-walled carbon nanotubes

[Display omitted] •CO conversion of >98% was achieved from ∼230 °C using pristine MWCNT as a catalyst.•COOH-modified MWCNT adsorbed significant amounts of CO molecules without converting.•Cu6 clusters initially formed CuCO3 that decomposed above 400 °C to release CO2. An inhibition of CO oxidatio...

Full description

Saved in:
Bibliographic Details
Published in:Applied catalysis. B, Environmental Environmental, 2020-03, Vol.262, p.118265, Article 118265
Main Authors: Baharudin, Luqmanulhakim, Yip, Alex C.K., Golovko, Vladimir B., Polson, Matthew I.J., Aguey-Zinsou, Kondo-Francois, Watson, Matthew J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-cf40ae3385cee03d5df5aae72c818484445177dbc8f44c4b271fdfb2cc5dadb93
cites cdi_FETCH-LOGICAL-c417t-cf40ae3385cee03d5df5aae72c818484445177dbc8f44c4b271fdfb2cc5dadb93
container_end_page
container_issue
container_start_page 118265
container_title Applied catalysis. B, Environmental
container_volume 262
creator Baharudin, Luqmanulhakim
Yip, Alex C.K.
Golovko, Vladimir B.
Polson, Matthew I.J.
Aguey-Zinsou, Kondo-Francois
Watson, Matthew J.
description [Display omitted] •CO conversion of >98% was achieved from ∼230 °C using pristine MWCNT as a catalyst.•COOH-modified MWCNT adsorbed significant amounts of CO molecules without converting.•Cu6 clusters initially formed CuCO3 that decomposed above 400 °C to release CO2. An inhibition of CO oxidation on catalytically active pristine multi-walled carbon nanotubes (MWCNT) in the presence of selected pollutant constituents in flue gas streams was studied. We simulated an interaction between the active MWCNT and the contaminants in CO oxidation atmosphere of: (i) an acidic wet flue gas environment modelled by using MWCNT grafted with carboxyl (COOH) groups; and (ii) a polluted environment formed by trace metal copper particles and other contaminant constituents (e.g. PAHs, VOCs and P) by using a copper cluster of chemical formulae [(PPh3)CuH]6·0.75THF as a model pollutant, doped on the MWCNT. The pristine, unmodified MWCNT were catalytically active from ∼150 °C, whilst the carboxyl-modified MWCNT behaved as an adsorbent of CO molecules without converting them into CO2. The copper cluster was found to have formed CuCO3 during the CO oxidation reaction at temperatures below 330 °C but decomposed above 400 °C to release CO2 product.
doi_str_mv 10.1016/j.apcatb.2019.118265
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2327890429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337319310112</els_id><sourcerecordid>2327890429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-cf40ae3385cee03d5df5aae72c818484445177dbc8f44c4b271fdfb2cc5dadb93</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpoduk_6AHQc7e6str7SUQliQNLOTSnIU8GhEtXsmV5Hz8-3jjQG49DQzv8w7zEPKLszVnfPP7sLYj2NqvBePbNedabNovZMV1JxuptfxKVmwrNo2UnfxOfpRyYIwJKfSKTLt7ml6CszWkSG10tD4iDfEx9OF9hd4j1EKTp2Bzn15eh-aYXPABPhlI44iZwjCVinkOR3qchhqaZzsM6BYy0mhjqlOP5Zx883Yo-PNjnpGHm-u_uz_N_v72bne1b0DxrjbgFbMopW4BkUnXOt9ai50AzbXSSqmWd53rQXulQPWi4975XgC0zrp-K8_IxdI75vRvwlLNIU05zifN_H6nt0yJU0otKciplIzejDkcbX41nJmTYHMwi2BzEmwWwTN2uWA4f_AUMJsCASOgC3lWZlwK_y94A9jziK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327890429</pqid></control><display><type>article</type><title>CO oxidation and the inhibition effects of carboxyl-modification and copper clusters on multi-walled carbon nanotubes</title><source>ScienceDirect Freedom Collection</source><creator>Baharudin, Luqmanulhakim ; Yip, Alex C.K. ; Golovko, Vladimir B. ; Polson, Matthew I.J. ; Aguey-Zinsou, Kondo-Francois ; Watson, Matthew J.</creator><creatorcontrib>Baharudin, Luqmanulhakim ; Yip, Alex C.K. ; Golovko, Vladimir B. ; Polson, Matthew I.J. ; Aguey-Zinsou, Kondo-Francois ; Watson, Matthew J.</creatorcontrib><description>[Display omitted] •CO conversion of &gt;98% was achieved from ∼230 °C using pristine MWCNT as a catalyst.•COOH-modified MWCNT adsorbed significant amounts of CO molecules without converting.•Cu6 clusters initially formed CuCO3 that decomposed above 400 °C to release CO2. An inhibition of CO oxidation on catalytically active pristine multi-walled carbon nanotubes (MWCNT) in the presence of selected pollutant constituents in flue gas streams was studied. We simulated an interaction between the active MWCNT and the contaminants in CO oxidation atmosphere of: (i) an acidic wet flue gas environment modelled by using MWCNT grafted with carboxyl (COOH) groups; and (ii) a polluted environment formed by trace metal copper particles and other contaminant constituents (e.g. PAHs, VOCs and P) by using a copper cluster of chemical formulae [(PPh3)CuH]6·0.75THF as a model pollutant, doped on the MWCNT. The pristine, unmodified MWCNT were catalytically active from ∼150 °C, whilst the carboxyl-modified MWCNT behaved as an adsorbent of CO molecules without converting them into CO2. The copper cluster was found to have formed CuCO3 during the CO oxidation reaction at temperatures below 330 °C but decomposed above 400 °C to release CO2 product.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2019.118265</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acidic oxides ; Air pollution ; Carbon dioxide ; Carbon monoxide ; Carbon nanotubes ; Carboxyl groups ; Clusters ; CO oxidation ; Computer simulation ; Contaminants ; Copper ; Copper cluster ; Copper converters ; Decomposition reactions ; Flue gas ; Gas streams ; Metallurgical constituents ; Multi wall carbon nanotubes ; Nanotechnology ; Nanotubes ; Organic chemistry ; Oxidation ; Pollutants ; Polycyclic aromatic hydrocarbons ; Reaction inhibition ; Stream pollution ; Trace metals ; Water pollution</subject><ispartof>Applied catalysis. B, Environmental, 2020-03, Vol.262, p.118265, Article 118265</ispartof><rights>2019 The Author(s)</rights><rights>Copyright Elsevier BV Mar 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-cf40ae3385cee03d5df5aae72c818484445177dbc8f44c4b271fdfb2cc5dadb93</citedby><cites>FETCH-LOGICAL-c417t-cf40ae3385cee03d5df5aae72c818484445177dbc8f44c4b271fdfb2cc5dadb93</cites><orcidid>0000-0001-8743-5389 ; 0000-0003-4042-7589 ; 0000-0002-3734-3897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Baharudin, Luqmanulhakim</creatorcontrib><creatorcontrib>Yip, Alex C.K.</creatorcontrib><creatorcontrib>Golovko, Vladimir B.</creatorcontrib><creatorcontrib>Polson, Matthew I.J.</creatorcontrib><creatorcontrib>Aguey-Zinsou, Kondo-Francois</creatorcontrib><creatorcontrib>Watson, Matthew J.</creatorcontrib><title>CO oxidation and the inhibition effects of carboxyl-modification and copper clusters on multi-walled carbon nanotubes</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •CO conversion of &gt;98% was achieved from ∼230 °C using pristine MWCNT as a catalyst.•COOH-modified MWCNT adsorbed significant amounts of CO molecules without converting.•Cu6 clusters initially formed CuCO3 that decomposed above 400 °C to release CO2. An inhibition of CO oxidation on catalytically active pristine multi-walled carbon nanotubes (MWCNT) in the presence of selected pollutant constituents in flue gas streams was studied. We simulated an interaction between the active MWCNT and the contaminants in CO oxidation atmosphere of: (i) an acidic wet flue gas environment modelled by using MWCNT grafted with carboxyl (COOH) groups; and (ii) a polluted environment formed by trace metal copper particles and other contaminant constituents (e.g. PAHs, VOCs and P) by using a copper cluster of chemical formulae [(PPh3)CuH]6·0.75THF as a model pollutant, doped on the MWCNT. The pristine, unmodified MWCNT were catalytically active from ∼150 °C, whilst the carboxyl-modified MWCNT behaved as an adsorbent of CO molecules without converting them into CO2. The copper cluster was found to have formed CuCO3 during the CO oxidation reaction at temperatures below 330 °C but decomposed above 400 °C to release CO2 product.</description><subject>Acidic oxides</subject><subject>Air pollution</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Carbon nanotubes</subject><subject>Carboxyl groups</subject><subject>Clusters</subject><subject>CO oxidation</subject><subject>Computer simulation</subject><subject>Contaminants</subject><subject>Copper</subject><subject>Copper cluster</subject><subject>Copper converters</subject><subject>Decomposition reactions</subject><subject>Flue gas</subject><subject>Gas streams</subject><subject>Metallurgical constituents</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Pollutants</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Reaction inhibition</subject><subject>Stream pollution</subject><subject>Trace metals</subject><subject>Water pollution</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVpoduk_6AHQc7e6str7SUQliQNLOTSnIU8GhEtXsmV5Hz8-3jjQG49DQzv8w7zEPKLszVnfPP7sLYj2NqvBePbNedabNovZMV1JxuptfxKVmwrNo2UnfxOfpRyYIwJKfSKTLt7ml6CszWkSG10tD4iDfEx9OF9hd4j1EKTp2Bzn15eh-aYXPABPhlI44iZwjCVinkOR3qchhqaZzsM6BYy0mhjqlOP5Zx883Yo-PNjnpGHm-u_uz_N_v72bne1b0DxrjbgFbMopW4BkUnXOt9ai50AzbXSSqmWd53rQXulQPWi4975XgC0zrp-K8_IxdI75vRvwlLNIU05zifN_H6nt0yJU0otKciplIzejDkcbX41nJmTYHMwi2BzEmwWwTN2uWA4f_AUMJsCASOgC3lWZlwK_y94A9jziK4</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Baharudin, Luqmanulhakim</creator><creator>Yip, Alex C.K.</creator><creator>Golovko, Vladimir B.</creator><creator>Polson, Matthew I.J.</creator><creator>Aguey-Zinsou, Kondo-Francois</creator><creator>Watson, Matthew J.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8743-5389</orcidid><orcidid>https://orcid.org/0000-0003-4042-7589</orcidid><orcidid>https://orcid.org/0000-0002-3734-3897</orcidid></search><sort><creationdate>20200301</creationdate><title>CO oxidation and the inhibition effects of carboxyl-modification and copper clusters on multi-walled carbon nanotubes</title><author>Baharudin, Luqmanulhakim ; Yip, Alex C.K. ; Golovko, Vladimir B. ; Polson, Matthew I.J. ; Aguey-Zinsou, Kondo-Francois ; Watson, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-cf40ae3385cee03d5df5aae72c818484445177dbc8f44c4b271fdfb2cc5dadb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acidic oxides</topic><topic>Air pollution</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Carbon nanotubes</topic><topic>Carboxyl groups</topic><topic>Clusters</topic><topic>CO oxidation</topic><topic>Computer simulation</topic><topic>Contaminants</topic><topic>Copper</topic><topic>Copper cluster</topic><topic>Copper converters</topic><topic>Decomposition reactions</topic><topic>Flue gas</topic><topic>Gas streams</topic><topic>Metallurgical constituents</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Pollutants</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Reaction inhibition</topic><topic>Stream pollution</topic><topic>Trace metals</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baharudin, Luqmanulhakim</creatorcontrib><creatorcontrib>Yip, Alex C.K.</creatorcontrib><creatorcontrib>Golovko, Vladimir B.</creatorcontrib><creatorcontrib>Polson, Matthew I.J.</creatorcontrib><creatorcontrib>Aguey-Zinsou, Kondo-Francois</creatorcontrib><creatorcontrib>Watson, Matthew J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baharudin, Luqmanulhakim</au><au>Yip, Alex C.K.</au><au>Golovko, Vladimir B.</au><au>Polson, Matthew I.J.</au><au>Aguey-Zinsou, Kondo-Francois</au><au>Watson, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO oxidation and the inhibition effects of carboxyl-modification and copper clusters on multi-walled carbon nanotubes</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>262</volume><spage>118265</spage><pages>118265-</pages><artnum>118265</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •CO conversion of &gt;98% was achieved from ∼230 °C using pristine MWCNT as a catalyst.•COOH-modified MWCNT adsorbed significant amounts of CO molecules without converting.•Cu6 clusters initially formed CuCO3 that decomposed above 400 °C to release CO2. An inhibition of CO oxidation on catalytically active pristine multi-walled carbon nanotubes (MWCNT) in the presence of selected pollutant constituents in flue gas streams was studied. We simulated an interaction between the active MWCNT and the contaminants in CO oxidation atmosphere of: (i) an acidic wet flue gas environment modelled by using MWCNT grafted with carboxyl (COOH) groups; and (ii) a polluted environment formed by trace metal copper particles and other contaminant constituents (e.g. PAHs, VOCs and P) by using a copper cluster of chemical formulae [(PPh3)CuH]6·0.75THF as a model pollutant, doped on the MWCNT. The pristine, unmodified MWCNT were catalytically active from ∼150 °C, whilst the carboxyl-modified MWCNT behaved as an adsorbent of CO molecules without converting them into CO2. The copper cluster was found to have formed CuCO3 during the CO oxidation reaction at temperatures below 330 °C but decomposed above 400 °C to release CO2 product.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2019.118265</doi><orcidid>https://orcid.org/0000-0001-8743-5389</orcidid><orcidid>https://orcid.org/0000-0003-4042-7589</orcidid><orcidid>https://orcid.org/0000-0002-3734-3897</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2020-03, Vol.262, p.118265, Article 118265
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2327890429
source ScienceDirect Freedom Collection
subjects Acidic oxides
Air pollution
Carbon dioxide
Carbon monoxide
Carbon nanotubes
Carboxyl groups
Clusters
CO oxidation
Computer simulation
Contaminants
Copper
Copper cluster
Copper converters
Decomposition reactions
Flue gas
Gas streams
Metallurgical constituents
Multi wall carbon nanotubes
Nanotechnology
Nanotubes
Organic chemistry
Oxidation
Pollutants
Polycyclic aromatic hydrocarbons
Reaction inhibition
Stream pollution
Trace metals
Water pollution
title CO oxidation and the inhibition effects of carboxyl-modification and copper clusters on multi-walled carbon nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO%20oxidation%20and%20the%20inhibition%20effects%20of%20carboxyl-modification%20and%20copper%20clusters%20on%20multi-walled%20carbon%20nanotubes&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Baharudin,%20Luqmanulhakim&rft.date=2020-03-01&rft.volume=262&rft.spage=118265&rft.pages=118265-&rft.artnum=118265&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2019.118265&rft_dat=%3Cproquest_cross%3E2327890429%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-cf40ae3385cee03d5df5aae72c818484445177dbc8f44c4b271fdfb2cc5dadb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2327890429&rft_id=info:pmid/&rfr_iscdi=true