Loading…

Global optimization of mixed-integer nonlinear programs: A theoretical and computational study

This work addresses the development of an efficient solution strategy for obtaining global optimazation of continuous, integer, and mixed-integer nonlinear programs. Towards this end, we develop novel relaxation schemes, range reduction tests, and branching strategies which we incorporate into the p...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming 2004-04, Vol.99 (3), p.563-591
Main Authors: TAWARMALANI, Mohit, SAHINIDIS, Nikolaos V
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c366t-e5a6a8aed53e09358c7d6e59e0dabbbf784929a84a724d14242d215319d2255f3
cites
container_end_page 591
container_issue 3
container_start_page 563
container_title Mathematical programming
container_volume 99
creator TAWARMALANI, Mohit
SAHINIDIS, Nikolaos V
description This work addresses the development of an efficient solution strategy for obtaining global optimazation of continuous, integer, and mixed-integer nonlinear programs. Towards this end, we develop novel relaxation schemes, range reduction tests, and branching strategies which we incorporate into the prototypical branch-and-bound algorithm. In the theoretical/algorithmic part of the paper, we begin by developing novel strategies for constructing linear relaxations of mixed-integer nonlinear programs and prove that these relaxations enjoy quadratic convergence properties. We then use Lagrangian/linear programming duality to develop a unifying theory of domain reduction strategies as a consequence of which we derive many range reduction strategies currently used in nonlinear programming and integer linear programming. This theory leads to new range reduction schemes, including a learning heuristic that improves initial branching decisions by relaying data across siblings in a branch-and-bound tree. Finally, we incorporate these relaxation and reduction strategies in a branch-and-bound algorithm that incorporates branching strategies that guarantee finiteness for certain classes of continuous global optimization problems.In the computational part of the paper, we describe our implementation discussing, wherever appropriate, the use of suitable data structures and associated algorithms. We present computational experience with benchmark separable concave quadratic programs, fractional 01 programs, and mixed-integer nonlinear programs from applications in synthesis of chemical processes, engineering design, just-in-time manufacturing, and molecular design. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s10107-003-0467-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_232850489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>674950591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-e5a6a8aed53e09358c7d6e59e0dabbbf784929a84a724d14242d215319d2255f3</originalsourceid><addsrcrecordid>eNpFkE9LAzEUxIMoWKsfwNsieIy-_N1db6VoFQpe9GpIN9masrtZkxSsn97UFjw9GGaGeT-ErgncEYDyPhIgUGIAhoHLEssTNCGcScwll6doAkAFFpLAObqIcQMAhFXVBH0sOr_SXeHH5Hr3o5PzQ-Hbonff1mA3JLu2oRj80LnB6lCMwa-D7uNDMSvSp_XBJtfkvB5M0fh-3Ka_iqzEtDW7S3TW6i7aq-Odovenx7f5M16-Ll7msyVumJQJW6GlrrQ1glmomaia0kgragtGr1artqx4TWtdcV1SbginnBpKBCO1oVSIlk3RzaE37_va2pjUxm9DnhEVZbQSwKs6m8jB1AQfY7CtGoPrddgpAmpPUR0oqkxR7SkqmTO3x2Id859t0EPj4n9QZLylBPYLzQxy5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232850489</pqid></control><display><type>article</type><title>Global optimization of mixed-integer nonlinear programs: A theoretical and computational study</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>TAWARMALANI, Mohit ; SAHINIDIS, Nikolaos V</creator><creatorcontrib>TAWARMALANI, Mohit ; SAHINIDIS, Nikolaos V</creatorcontrib><description>This work addresses the development of an efficient solution strategy for obtaining global optimazation of continuous, integer, and mixed-integer nonlinear programs. Towards this end, we develop novel relaxation schemes, range reduction tests, and branching strategies which we incorporate into the prototypical branch-and-bound algorithm. In the theoretical/algorithmic part of the paper, we begin by developing novel strategies for constructing linear relaxations of mixed-integer nonlinear programs and prove that these relaxations enjoy quadratic convergence properties. We then use Lagrangian/linear programming duality to develop a unifying theory of domain reduction strategies as a consequence of which we derive many range reduction strategies currently used in nonlinear programming and integer linear programming. This theory leads to new range reduction schemes, including a learning heuristic that improves initial branching decisions by relaying data across siblings in a branch-and-bound tree. Finally, we incorporate these relaxation and reduction strategies in a branch-and-bound algorithm that incorporates branching strategies that guarantee finiteness for certain classes of continuous global optimization problems.In the computational part of the paper, we describe our implementation discussing, wherever appropriate, the use of suitable data structures and associated algorithms. We present computational experience with benchmark separable concave quadratic programs, fractional 01 programs, and mixed-integer nonlinear programs from applications in synthesis of chemical processes, engineering design, just-in-time manufacturing, and molecular design. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-003-0467-6</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Applied sciences ; Design engineering ; Digital Object Identifier ; Exact sciences and technology ; Integer programming ; Linear programming ; Mathematical programming ; Nonlinear programming ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Optimization algorithms ; Studies</subject><ispartof>Mathematical programming, 2004-04, Vol.99 (3), p.563-591</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Springer-Verlag 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-e5a6a8aed53e09358c7d6e59e0dabbbf784929a84a724d14242d215319d2255f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/232850489?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15646760$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TAWARMALANI, Mohit</creatorcontrib><creatorcontrib>SAHINIDIS, Nikolaos V</creatorcontrib><title>Global optimization of mixed-integer nonlinear programs: A theoretical and computational study</title><title>Mathematical programming</title><description>This work addresses the development of an efficient solution strategy for obtaining global optimazation of continuous, integer, and mixed-integer nonlinear programs. Towards this end, we develop novel relaxation schemes, range reduction tests, and branching strategies which we incorporate into the prototypical branch-and-bound algorithm. In the theoretical/algorithmic part of the paper, we begin by developing novel strategies for constructing linear relaxations of mixed-integer nonlinear programs and prove that these relaxations enjoy quadratic convergence properties. We then use Lagrangian/linear programming duality to develop a unifying theory of domain reduction strategies as a consequence of which we derive many range reduction strategies currently used in nonlinear programming and integer linear programming. This theory leads to new range reduction schemes, including a learning heuristic that improves initial branching decisions by relaying data across siblings in a branch-and-bound tree. Finally, we incorporate these relaxation and reduction strategies in a branch-and-bound algorithm that incorporates branching strategies that guarantee finiteness for certain classes of continuous global optimization problems.In the computational part of the paper, we describe our implementation discussing, wherever appropriate, the use of suitable data structures and associated algorithms. We present computational experience with benchmark separable concave quadratic programs, fractional 01 programs, and mixed-integer nonlinear programs from applications in synthesis of chemical processes, engineering design, just-in-time manufacturing, and molecular design. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Design engineering</subject><subject>Digital Object Identifier</subject><subject>Exact sciences and technology</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Nonlinear programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Studies</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpFkE9LAzEUxIMoWKsfwNsieIy-_N1db6VoFQpe9GpIN9masrtZkxSsn97UFjw9GGaGeT-ErgncEYDyPhIgUGIAhoHLEssTNCGcScwll6doAkAFFpLAObqIcQMAhFXVBH0sOr_SXeHH5Hr3o5PzQ-Hbonff1mA3JLu2oRj80LnB6lCMwa-D7uNDMSvSp_XBJtfkvB5M0fh-3Ka_iqzEtDW7S3TW6i7aq-Odovenx7f5M16-Ll7msyVumJQJW6GlrrQ1glmomaia0kgragtGr1artqx4TWtdcV1SbginnBpKBCO1oVSIlk3RzaE37_va2pjUxm9DnhEVZbQSwKs6m8jB1AQfY7CtGoPrddgpAmpPUR0oqkxR7SkqmTO3x2Id859t0EPj4n9QZLylBPYLzQxy5g</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>TAWARMALANI, Mohit</creator><creator>SAHINIDIS, Nikolaos V</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20040401</creationdate><title>Global optimization of mixed-integer nonlinear programs: A theoretical and computational study</title><author>TAWARMALANI, Mohit ; SAHINIDIS, Nikolaos V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-e5a6a8aed53e09358c7d6e59e0dabbbf784929a84a724d14242d215319d2255f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Design engineering</topic><topic>Digital Object Identifier</topic><topic>Exact sciences and technology</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Nonlinear programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TAWARMALANI, Mohit</creatorcontrib><creatorcontrib>SAHINIDIS, Nikolaos V</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TAWARMALANI, Mohit</au><au>SAHINIDIS, Nikolaos V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global optimization of mixed-integer nonlinear programs: A theoretical and computational study</atitle><jtitle>Mathematical programming</jtitle><date>2004-04-01</date><risdate>2004</risdate><volume>99</volume><issue>3</issue><spage>563</spage><epage>591</epage><pages>563-591</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>This work addresses the development of an efficient solution strategy for obtaining global optimazation of continuous, integer, and mixed-integer nonlinear programs. Towards this end, we develop novel relaxation schemes, range reduction tests, and branching strategies which we incorporate into the prototypical branch-and-bound algorithm. In the theoretical/algorithmic part of the paper, we begin by developing novel strategies for constructing linear relaxations of mixed-integer nonlinear programs and prove that these relaxations enjoy quadratic convergence properties. We then use Lagrangian/linear programming duality to develop a unifying theory of domain reduction strategies as a consequence of which we derive many range reduction strategies currently used in nonlinear programming and integer linear programming. This theory leads to new range reduction schemes, including a learning heuristic that improves initial branching decisions by relaying data across siblings in a branch-and-bound tree. Finally, we incorporate these relaxation and reduction strategies in a branch-and-bound algorithm that incorporates branching strategies that guarantee finiteness for certain classes of continuous global optimization problems.In the computational part of the paper, we describe our implementation discussing, wherever appropriate, the use of suitable data structures and associated algorithms. We present computational experience with benchmark separable concave quadratic programs, fractional 01 programs, and mixed-integer nonlinear programs from applications in synthesis of chemical processes, engineering design, just-in-time manufacturing, and molecular design. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10107-003-0467-6</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2004-04, Vol.99 (3), p.563-591
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_232850489
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; ABI/INFORM Global (ProQuest); Springer Nature
subjects Algorithms
Applied sciences
Design engineering
Digital Object Identifier
Exact sciences and technology
Integer programming
Linear programming
Mathematical programming
Nonlinear programming
Operational research and scientific management
Operational research. Management science
Optimization
Optimization algorithms
Studies
title Global optimization of mixed-integer nonlinear programs: A theoretical and computational study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20optimization%20of%20mixed-integer%20nonlinear%20programs:%20A%20theoretical%20and%20computational%20study&rft.jtitle=Mathematical%20programming&rft.au=TAWARMALANI,%20Mohit&rft.date=2004-04-01&rft.volume=99&rft.issue=3&rft.spage=563&rft.epage=591&rft.pages=563-591&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-003-0467-6&rft_dat=%3Cproquest_cross%3E674950591%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-e5a6a8aed53e09358c7d6e59e0dabbbf784929a84a724d14242d215319d2255f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=232850489&rft_id=info:pmid/&rfr_iscdi=true