Loading…

On robust optimization of two-stage systems

Robust-optimization models belong to a special class of stochastic programs, where the traditional expected cost minimization objective is replaced by one that explicitly addresses cost variability. This paper explores robust optimization in the context of two-stage planning systems. We show that, u...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming 2004, Vol.99 (1), p.109-126
Main Authors: TAKRITI, Samer, AHMED, Shabbir
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Robust-optimization models belong to a special class of stochastic programs, where the traditional expected cost minimization objective is replaced by one that explicitly addresses cost variability. This paper explores robust optimization in the context of two-stage planning systems. We show that, under arbitrary measures for variability, the robust optimization approach might lead to suboptimal solutions to the second-stage planning problem. As a result, the variability of the second-stage costs may be underestimated, thereby defeating the intended purpose of the model. We propose sufficient conditions on the variability measure to remedy this problem. Under the proposed conditions, a robust optimization model can be efficiently solved using a variant of the L-shaped decomposition algorithm for traditional stochastic linear programs. We apply the proposed framework to standard stochastic-programming test problems and to an application that arises in auctioning excess electric power.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-003-0373-y