Loading…
Solving large quadratic assignment problems on computational grids
The quadratic assignment problem (QAP) is among the hardest combinatorial optimization problems. Some instances of size n = 30 have remained unsolved for decades. The solution of these problems requires both improvements in mathematical programming algorithms and the utilization of powerful computat...
Saved in:
Published in: | Mathematical programming 2002-02, Vol.91 (3), p.563-588 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-e1d1c32bc47f74f8b1004aa062d436c7e9e07b4af42f9ded71d13714925b6ee93 |
---|---|
cites | |
container_end_page | 588 |
container_issue | 3 |
container_start_page | 563 |
container_title | Mathematical programming |
container_volume | 91 |
creator | ANSTREICHER, Kurt BRIXIUS, Nathan GOUX, Jean-Pierre LINDEROTH, Jeff |
description | The quadratic assignment problem (QAP) is among the hardest combinatorial optimization problems. Some instances of size n = 30 have remained unsolved for decades. The solution of these problems requires both improvements in mathematical programming algorithms and the utilization of powerful computational platforms. In this article we describe a novel approach to solve QAPs using a state-of-the-art branch-and-bound algorithm running on a federation of geographically distributed resources known as a computational grid. Solution of QAPs of unprecedented complexity, including the nug30, kra30b, and tho30 instances, is reported. |
doi_str_mv | 10.1007/s101070100255 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_232852112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>703727541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e1d1c32bc47f74f8b1004aa062d436c7e9e07b4af42f9ded71d13714925b6ee93</originalsourceid><addsrcrecordid>eNpVkE1LxDAQhoMoWFeP3oPgsZpJ0qY96uIXLHhQzyVNk9KlbbqZVvDfm2UXxMMwMDzz8vAScg3sDhhT9wgMmIrDeJadkASkyFOZy_yUJPtbmuXAzskF4pYxBqIoEvL44fvvbmxpr0Nr6W7RTdBzZ6hG7NpxsONMp-Dr3g5I_UiNH6ZljoQfdU_b0DV4Sc6c7tFeHfeKfD0_fa5f0837y9v6YZMakRVzaqEBI3htpHJKuqKOnlJrlvMmehplS8tULbWT3JWNbVTkhQJZ8qzOrS3FitwccqPPbrE4V1u_hKiBFRe8yDgAj1B6gEzwiMG6agrdoMNPBazat1T9aynyt8dQjUb3LujRdPj3JKUEEFL8AgRxZo8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232852112</pqid></control><display><type>article</type><title>Solving large quadratic assignment problems on computational grids</title><source>ABI/INFORM global</source><source>Access via Business Source (EBSCOhost)</source><source>Springer Nature</source><creator>ANSTREICHER, Kurt ; BRIXIUS, Nathan ; GOUX, Jean-Pierre ; LINDEROTH, Jeff</creator><creatorcontrib>ANSTREICHER, Kurt ; BRIXIUS, Nathan ; GOUX, Jean-Pierre ; LINDEROTH, Jeff</creatorcontrib><description>The quadratic assignment problem (QAP) is among the hardest combinatorial optimization problems. Some instances of size n = 30 have remained unsolved for decades. The solution of these problems requires both improvements in mathematical programming algorithms and the utilization of powerful computational platforms. In this article we describe a novel approach to solve QAPs using a state-of-the-art branch-and-bound algorithm running on a federation of geographically distributed resources known as a computational grid. Solution of QAPs of unprecedented complexity, including the nug30, kra30b, and tho30 instances, is reported.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s101070100255</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Applied sciences ; Assignment problem ; Distributed processing ; Eigenvalues ; Exact sciences and technology ; Linear programming ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science ; Optimization</subject><ispartof>Mathematical programming, 2002-02, Vol.91 (3), p.563-588</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright Springer-Verlag 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e1d1c32bc47f74f8b1004aa062d436c7e9e07b4af42f9ded71d13714925b6ee93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/232852112?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,11688,23930,23931,25140,27924,27925,36060,44363</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14441134$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ANSTREICHER, Kurt</creatorcontrib><creatorcontrib>BRIXIUS, Nathan</creatorcontrib><creatorcontrib>GOUX, Jean-Pierre</creatorcontrib><creatorcontrib>LINDEROTH, Jeff</creatorcontrib><title>Solving large quadratic assignment problems on computational grids</title><title>Mathematical programming</title><description>The quadratic assignment problem (QAP) is among the hardest combinatorial optimization problems. Some instances of size n = 30 have remained unsolved for decades. The solution of these problems requires both improvements in mathematical programming algorithms and the utilization of powerful computational platforms. In this article we describe a novel approach to solve QAPs using a state-of-the-art branch-and-bound algorithm running on a federation of geographically distributed resources known as a computational grid. Solution of QAPs of unprecedented complexity, including the nug30, kra30b, and tho30 instances, is reported.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Assignment problem</subject><subject>Distributed processing</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpVkE1LxDAQhoMoWFeP3oPgsZpJ0qY96uIXLHhQzyVNk9KlbbqZVvDfm2UXxMMwMDzz8vAScg3sDhhT9wgMmIrDeJadkASkyFOZy_yUJPtbmuXAzskF4pYxBqIoEvL44fvvbmxpr0Nr6W7RTdBzZ6hG7NpxsONMp-Dr3g5I_UiNH6ZljoQfdU_b0DV4Sc6c7tFeHfeKfD0_fa5f0837y9v6YZMakRVzaqEBI3htpHJKuqKOnlJrlvMmehplS8tULbWT3JWNbVTkhQJZ8qzOrS3FitwccqPPbrE4V1u_hKiBFRe8yDgAj1B6gEzwiMG6agrdoMNPBazat1T9aynyt8dQjUb3LujRdPj3JKUEEFL8AgRxZo8</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>ANSTREICHER, Kurt</creator><creator>BRIXIUS, Nathan</creator><creator>GOUX, Jean-Pierre</creator><creator>LINDEROTH, Jeff</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20020201</creationdate><title>Solving large quadratic assignment problems on computational grids</title><author>ANSTREICHER, Kurt ; BRIXIUS, Nathan ; GOUX, Jean-Pierre ; LINDEROTH, Jeff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e1d1c32bc47f74f8b1004aa062d436c7e9e07b4af42f9ded71d13714925b6ee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Assignment problem</topic><topic>Distributed processing</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ANSTREICHER, Kurt</creatorcontrib><creatorcontrib>BRIXIUS, Nathan</creatorcontrib><creatorcontrib>GOUX, Jean-Pierre</creatorcontrib><creatorcontrib>LINDEROTH, Jeff</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ANSTREICHER, Kurt</au><au>BRIXIUS, Nathan</au><au>GOUX, Jean-Pierre</au><au>LINDEROTH, Jeff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving large quadratic assignment problems on computational grids</atitle><jtitle>Mathematical programming</jtitle><date>2002-02-01</date><risdate>2002</risdate><volume>91</volume><issue>3</issue><spage>563</spage><epage>588</epage><pages>563-588</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>The quadratic assignment problem (QAP) is among the hardest combinatorial optimization problems. Some instances of size n = 30 have remained unsolved for decades. The solution of these problems requires both improvements in mathematical programming algorithms and the utilization of powerful computational platforms. In this article we describe a novel approach to solve QAPs using a state-of-the-art branch-and-bound algorithm running on a federation of geographically distributed resources known as a computational grid. Solution of QAPs of unprecedented complexity, including the nug30, kra30b, and tho30 instances, is reported.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s101070100255</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2002-02, Vol.91 (3), p.563-588 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_journals_232852112 |
source | ABI/INFORM global; Access via Business Source (EBSCOhost); Springer Nature |
subjects | Algorithms Applied sciences Assignment problem Distributed processing Eigenvalues Exact sciences and technology Linear programming Mathematical programming Operational research and scientific management Operational research. Management science Optimization |
title | Solving large quadratic assignment problems on computational grids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20large%20quadratic%20assignment%20problems%20on%20computational%20grids&rft.jtitle=Mathematical%20programming&rft.au=ANSTREICHER,%20Kurt&rft.date=2002-02-01&rft.volume=91&rft.issue=3&rft.spage=563&rft.epage=588&rft.pages=563-588&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s101070100255&rft_dat=%3Cproquest_cross%3E703727541%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-e1d1c32bc47f74f8b1004aa062d436c7e9e07b4af42f9ded71d13714925b6ee93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=232852112&rft_id=info:pmid/&rfr_iscdi=true |