Loading…
GENERALIZED THOM SPECTRA AND THEIR TOPOLOGICAL HOCHSCHILD HOMOLOGY
We develop a theory of $R$ -module Thom spectra for a commutative symmetric ring spectrum $R$ and we analyze their multiplicative properties. As an interesting source of examples, we show that $R$ -algebra Thom spectra associated to the special unitary groups can be described in terms of quotient co...
Saved in:
Published in: | Journal of the Institute of Mathematics of Jussieu 2020-01, Vol.19 (1), p.21-64 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c273t-39af407ff83ca94b29387f1d2b0860831666647b0d7b018804ca66a298fbaddf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c273t-39af407ff83ca94b29387f1d2b0860831666647b0d7b018804ca66a298fbaddf3 |
container_end_page | 64 |
container_issue | 1 |
container_start_page | 21 |
container_title | Journal of the Institute of Mathematics of Jussieu |
container_volume | 19 |
creator | Basu, Samik Sagave, Steffen Schlichtkrull, Christian |
description | We develop a theory of
$R$
-module Thom spectra for a commutative symmetric ring spectrum
$R$
and we analyze their multiplicative properties. As an interesting source of examples, we show that
$R$
-algebra Thom spectra associated to the special unitary groups can be described in terms of quotient constructions on
$R$
. We apply the general theory to obtain a description of the
$R$
-based topological Hochschild homology associated to an
$R$
-algebra Thom spectrum. |
doi_str_mv | 10.1017/S1474748017000421 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2328637869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328637869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-39af407ff83ca94b29387f1d2b0860831666647b0d7b018804ca66a298fbaddf3</originalsourceid><addsrcrecordid>eNplUMtOwzAQtBBIlMIHcIvEObB-1HaOkRuaSKGpknCAi-U8LFEBLXF76N_wLXwZDu2NXa12NDu7Kw1CtxjuMWDxUGEmfEqPAYARfIYmnpqFFCic_2EWjvNLdOXcGoBwMsMTpBbJMinjPHtN5kGdFk9BtUpUXcZBvByJJCuDulgVebHIVJz_fKeFSiuVZvk88OqRf7lGF9a8u_7m1Kfo-TGpVRqelsKWCLoLaWQsA2GtpK2JWEMiKoXFHWlAcpAUcx9MNND5wlICaw3nhkTSNqbrLJ2iu-Pd7bD52vdup9eb_fDpX2pCieRUSB55FT6q2mHj3NBbvR3ePsxw0Bj06JX-5xX9BemmVP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328637869</pqid></control><display><type>article</type><title>GENERALIZED THOM SPECTRA AND THEIR TOPOLOGICAL HOCHSCHILD HOMOLOGY</title><source>Cambridge University Press</source><creator>Basu, Samik ; Sagave, Steffen ; Schlichtkrull, Christian</creator><creatorcontrib>Basu, Samik ; Sagave, Steffen ; Schlichtkrull, Christian</creatorcontrib><description>We develop a theory of
$R$
-module Thom spectra for a commutative symmetric ring spectrum
$R$
and we analyze their multiplicative properties. As an interesting source of examples, we show that
$R$
-algebra Thom spectra associated to the special unitary groups can be described in terms of quotient constructions on
$R$
. We apply the general theory to obtain a description of the
$R$
-based topological Hochschild homology associated to an
$R$
-algebra Thom spectrum.</description><identifier>ISSN: 1474-7480</identifier><identifier>EISSN: 1475-3030</identifier><identifier>DOI: 10.1017/S1474748017000421</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Algebra ; Homology ; Quotients ; Rings (mathematics) ; Spectra ; Topology</subject><ispartof>Journal of the Institute of Mathematics of Jussieu, 2020-01, Vol.19 (1), p.21-64</ispartof><rights>Cambridge University Press 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-39af407ff83ca94b29387f1d2b0860831666647b0d7b018804ca66a298fbaddf3</citedby><cites>FETCH-LOGICAL-c273t-39af407ff83ca94b29387f1d2b0860831666647b0d7b018804ca66a298fbaddf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Basu, Samik</creatorcontrib><creatorcontrib>Sagave, Steffen</creatorcontrib><creatorcontrib>Schlichtkrull, Christian</creatorcontrib><title>GENERALIZED THOM SPECTRA AND THEIR TOPOLOGICAL HOCHSCHILD HOMOLOGY</title><title>Journal of the Institute of Mathematics of Jussieu</title><description>We develop a theory of
$R$
-module Thom spectra for a commutative symmetric ring spectrum
$R$
and we analyze their multiplicative properties. As an interesting source of examples, we show that
$R$
-algebra Thom spectra associated to the special unitary groups can be described in terms of quotient constructions on
$R$
. We apply the general theory to obtain a description of the
$R$
-based topological Hochschild homology associated to an
$R$
-algebra Thom spectrum.</description><subject>Algebra</subject><subject>Homology</subject><subject>Quotients</subject><subject>Rings (mathematics)</subject><subject>Spectra</subject><subject>Topology</subject><issn>1474-7480</issn><issn>1475-3030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNplUMtOwzAQtBBIlMIHcIvEObB-1HaOkRuaSKGpknCAi-U8LFEBLXF76N_wLXwZDu2NXa12NDu7Kw1CtxjuMWDxUGEmfEqPAYARfIYmnpqFFCic_2EWjvNLdOXcGoBwMsMTpBbJMinjPHtN5kGdFk9BtUpUXcZBvByJJCuDulgVebHIVJz_fKeFSiuVZvk88OqRf7lGF9a8u_7m1Kfo-TGpVRqelsKWCLoLaWQsA2GtpK2JWEMiKoXFHWlAcpAUcx9MNND5wlICaw3nhkTSNqbrLJ2iu-Pd7bD52vdup9eb_fDpX2pCieRUSB55FT6q2mHj3NBbvR3ePsxw0Bj06JX-5xX9BemmVP0</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Basu, Samik</creator><creator>Sagave, Steffen</creator><creator>Schlichtkrull, Christian</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202001</creationdate><title>GENERALIZED THOM SPECTRA AND THEIR TOPOLOGICAL HOCHSCHILD HOMOLOGY</title><author>Basu, Samik ; Sagave, Steffen ; Schlichtkrull, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-39af407ff83ca94b29387f1d2b0860831666647b0d7b018804ca66a298fbaddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Homology</topic><topic>Quotients</topic><topic>Rings (mathematics)</topic><topic>Spectra</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basu, Samik</creatorcontrib><creatorcontrib>Sagave, Steffen</creatorcontrib><creatorcontrib>Schlichtkrull, Christian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basu, Samik</au><au>Sagave, Steffen</au><au>Schlichtkrull, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GENERALIZED THOM SPECTRA AND THEIR TOPOLOGICAL HOCHSCHILD HOMOLOGY</atitle><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle><date>2020-01</date><risdate>2020</risdate><volume>19</volume><issue>1</issue><spage>21</spage><epage>64</epage><pages>21-64</pages><issn>1474-7480</issn><eissn>1475-3030</eissn><abstract>We develop a theory of
$R$
-module Thom spectra for a commutative symmetric ring spectrum
$R$
and we analyze their multiplicative properties. As an interesting source of examples, we show that
$R$
-algebra Thom spectra associated to the special unitary groups can be described in terms of quotient constructions on
$R$
. We apply the general theory to obtain a description of the
$R$
-based topological Hochschild homology associated to an
$R$
-algebra Thom spectrum.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S1474748017000421</doi><tpages>44</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1474-7480 |
ispartof | Journal of the Institute of Mathematics of Jussieu, 2020-01, Vol.19 (1), p.21-64 |
issn | 1474-7480 1475-3030 |
language | eng |
recordid | cdi_proquest_journals_2328637869 |
source | Cambridge University Press |
subjects | Algebra Homology Quotients Rings (mathematics) Spectra Topology |
title | GENERALIZED THOM SPECTRA AND THEIR TOPOLOGICAL HOCHSCHILD HOMOLOGY |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A40%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GENERALIZED%20THOM%20SPECTRA%20AND%20THEIR%20TOPOLOGICAL%C2%A0HOCHSCHILD%20HOMOLOGY&rft.jtitle=Journal%20of%20the%20Institute%20of%20Mathematics%20of%20Jussieu&rft.au=Basu,%20Samik&rft.date=2020-01&rft.volume=19&rft.issue=1&rft.spage=21&rft.epage=64&rft.pages=21-64&rft.issn=1474-7480&rft.eissn=1475-3030&rft_id=info:doi/10.1017/S1474748017000421&rft_dat=%3Cproquest_cross%3E2328637869%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-39af407ff83ca94b29387f1d2b0860831666647b0d7b018804ca66a298fbaddf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2328637869&rft_id=info:pmid/&rfr_iscdi=true |