Loading…
Adaptive Model Checking
We consider the case where inconsistencies are present between a system and its corresponding model, used for automatic verification. Such inconsistencies can be the result of modeling errors or recent modifications of the system. Despite such discrepancies, we can still attempt to perform automatic...
Saved in:
Published in: | Logic journal of the IGPL 2006-10, Vol.14 (5), p.729-744 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-bdd4d789bdfcb7d8061368505d039dc64cca5261331103d56457a5ad60337e493 |
---|---|
cites | |
container_end_page | 744 |
container_issue | 5 |
container_start_page | 729 |
container_title | Logic journal of the IGPL |
container_volume | 14 |
creator | Groce, Alex Peled, Doron Yannakakis, Mihalis |
description | We consider the case where inconsistencies are present between a system and its corresponding model, used for automatic verification. Such inconsistencies can be the result of modeling errors or recent modifications of the system. Despite such discrepancies, we can still attempt to perform automatic verification. In fact, as we show, we can sometimes exploit the verification results to assist in automatically learning the required updates to the model. In a related previous work, we have suggested the idea of black box checking, where verification starts without any model, and the model is obtained while repeated verification attempts are performed. Under the current assumptions, an existing inaccurate (but not completely obsolete) model is used to expedite the updates. We use techniques from black box testing and machine learning. We present an implementation of the proposed methodology called AMC (for Adaptive Model Checking). We discuss some experimental results, comparing various tactics of updating a model while trying to perform model checking. |
doi_str_mv | 10.1093/jigpal/jzl007 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_232894244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jigpal/jzl007</oup_id><sourcerecordid>1184211791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-bdd4d789bdfcb7d8061368505d039dc64cca5261331103d56457a5ad60337e493</originalsourceid><addsrcrecordid>eNqFjz1PwzAQhi0EEqUwItaKicX0HH_FYxXxJRWxwGw5PqckhCbYKRL8elLCznSn06P3vYeQcwbXDAxfNvWmd-2y-W4B9AGZMa5yanIjDn93TUFLdkxOUmoAQOSZnJGLFbp-qD_D4rHD0C6K1-Df6u3mlBxVrk3h7G_OycvtzXNxT9dPdw_Fak0952qgJaJAnZsSK19qzEHtSyVIBG7QK-G9k9l45IwBR6mE1E46VMC5DsLwObmccvvYfexCGmzT7eJ2rLQZz8bfMyFGiE6Qj11KMVS2j_W7i1-Wgd2r20ndTuojfzXx3a7_B_0B7vhZdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232894244</pqid></control><display><type>article</type><title>Adaptive Model Checking</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Oxford Journals Online</source><creator>Groce, Alex ; Peled, Doron ; Yannakakis, Mihalis</creator><creatorcontrib>Groce, Alex ; Peled, Doron ; Yannakakis, Mihalis</creatorcontrib><description>We consider the case where inconsistencies are present between a system and its corresponding model, used for automatic verification. Such inconsistencies can be the result of modeling errors or recent modifications of the system. Despite such discrepancies, we can still attempt to perform automatic verification. In fact, as we show, we can sometimes exploit the verification results to assist in automatically learning the required updates to the model. In a related previous work, we have suggested the idea of black box checking, where verification starts without any model, and the model is obtained while repeated verification attempts are performed. Under the current assumptions, an existing inaccurate (but not completely obsolete) model is used to expedite the updates. We use techniques from black box testing and machine learning. We present an implementation of the proposed methodology called AMC (for Adaptive Model Checking). We discuss some experimental results, comparing various tactics of updating a model while trying to perform model checking.</description><identifier>ISSN: 1367-0751</identifier><identifier>EISSN: 1368-9894</identifier><identifier>DOI: 10.1093/jigpal/jzl007</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><ispartof>Logic journal of the IGPL, 2006-10, Vol.14 (5), p.729-744</ispartof><rights>The Author, 2006. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2006</rights><rights>Copyright Oxford University Press(England) Oct 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-bdd4d789bdfcb7d8061368505d039dc64cca5261331103d56457a5ad60337e493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Groce, Alex</creatorcontrib><creatorcontrib>Peled, Doron</creatorcontrib><creatorcontrib>Yannakakis, Mihalis</creatorcontrib><title>Adaptive Model Checking</title><title>Logic journal of the IGPL</title><description>We consider the case where inconsistencies are present between a system and its corresponding model, used for automatic verification. Such inconsistencies can be the result of modeling errors or recent modifications of the system. Despite such discrepancies, we can still attempt to perform automatic verification. In fact, as we show, we can sometimes exploit the verification results to assist in automatically learning the required updates to the model. In a related previous work, we have suggested the idea of black box checking, where verification starts without any model, and the model is obtained while repeated verification attempts are performed. Under the current assumptions, an existing inaccurate (but not completely obsolete) model is used to expedite the updates. We use techniques from black box testing and machine learning. We present an implementation of the proposed methodology called AMC (for Adaptive Model Checking). We discuss some experimental results, comparing various tactics of updating a model while trying to perform model checking.</description><issn>1367-0751</issn><issn>1368-9894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFjz1PwzAQhi0EEqUwItaKicX0HH_FYxXxJRWxwGw5PqckhCbYKRL8elLCznSn06P3vYeQcwbXDAxfNvWmd-2y-W4B9AGZMa5yanIjDn93TUFLdkxOUmoAQOSZnJGLFbp-qD_D4rHD0C6K1-Df6u3mlBxVrk3h7G_OycvtzXNxT9dPdw_Fak0952qgJaJAnZsSK19qzEHtSyVIBG7QK-G9k9l45IwBR6mE1E46VMC5DsLwObmccvvYfexCGmzT7eJ2rLQZz8bfMyFGiE6Qj11KMVS2j_W7i1-Wgd2r20ndTuojfzXx3a7_B_0B7vhZdQ</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Groce, Alex</creator><creator>Peled, Doron</creator><creator>Yannakakis, Mihalis</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20061001</creationdate><title>Adaptive Model Checking</title><author>Groce, Alex ; Peled, Doron ; Yannakakis, Mihalis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-bdd4d789bdfcb7d8061368505d039dc64cca5261331103d56457a5ad60337e493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groce, Alex</creatorcontrib><creatorcontrib>Peled, Doron</creatorcontrib><creatorcontrib>Yannakakis, Mihalis</creatorcontrib><collection>CrossRef</collection><jtitle>Logic journal of the IGPL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groce, Alex</au><au>Peled, Doron</au><au>Yannakakis, Mihalis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Model Checking</atitle><jtitle>Logic journal of the IGPL</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>14</volume><issue>5</issue><spage>729</spage><epage>744</epage><pages>729-744</pages><issn>1367-0751</issn><eissn>1368-9894</eissn><abstract>We consider the case where inconsistencies are present between a system and its corresponding model, used for automatic verification. Such inconsistencies can be the result of modeling errors or recent modifications of the system. Despite such discrepancies, we can still attempt to perform automatic verification. In fact, as we show, we can sometimes exploit the verification results to assist in automatically learning the required updates to the model. In a related previous work, we have suggested the idea of black box checking, where verification starts without any model, and the model is obtained while repeated verification attempts are performed. Under the current assumptions, an existing inaccurate (but not completely obsolete) model is used to expedite the updates. We use techniques from black box testing and machine learning. We present an implementation of the proposed methodology called AMC (for Adaptive Model Checking). We discuss some experimental results, comparing various tactics of updating a model while trying to perform model checking.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/jigpal/jzl007</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-0751 |
ispartof | Logic journal of the IGPL, 2006-10, Vol.14 (5), p.729-744 |
issn | 1367-0751 1368-9894 |
language | eng |
recordid | cdi_proquest_journals_232894244 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Oxford Journals Online |
title | Adaptive Model Checking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Model%20Checking&rft.jtitle=Logic%20journal%20of%20the%20IGPL&rft.au=Groce,%20Alex&rft.date=2006-10-01&rft.volume=14&rft.issue=5&rft.spage=729&rft.epage=744&rft.pages=729-744&rft.issn=1367-0751&rft.eissn=1368-9894&rft_id=info:doi/10.1093/jigpal/jzl007&rft_dat=%3Cproquest_cross%3E1184211791%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-bdd4d789bdfcb7d8061368505d039dc64cca5261331103d56457a5ad60337e493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=232894244&rft_id=info:pmid/&rft_oup_id=10.1093/jigpal/jzl007&rfr_iscdi=true |