Loading…

Adaptive Model Checking

We consider the case where inconsistencies are present between a system and its corresponding model, used for automatic verification. Such inconsistencies can be the result of modeling errors or recent modifications of the system. Despite such discrepancies, we can still attempt to perform automatic...

Full description

Saved in:
Bibliographic Details
Published in:Logic journal of the IGPL 2006-10, Vol.14 (5), p.729-744
Main Authors: Groce, Alex, Peled, Doron, Yannakakis, Mihalis
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-bdd4d789bdfcb7d8061368505d039dc64cca5261331103d56457a5ad60337e493
cites
container_end_page 744
container_issue 5
container_start_page 729
container_title Logic journal of the IGPL
container_volume 14
creator Groce, Alex
Peled, Doron
Yannakakis, Mihalis
description We consider the case where inconsistencies are present between a system and its corresponding model, used for automatic verification. Such inconsistencies can be the result of modeling errors or recent modifications of the system. Despite such discrepancies, we can still attempt to perform automatic verification. In fact, as we show, we can sometimes exploit the verification results to assist in automatically learning the required updates to the model. In a related previous work, we have suggested the idea of black box checking, where verification starts without any model, and the model is obtained while repeated verification attempts are performed. Under the current assumptions, an existing inaccurate (but not completely obsolete) model is used to expedite the updates. We use techniques from black box testing and machine learning. We present an implementation of the proposed methodology called AMC (for Adaptive Model Checking). We discuss some experimental results, comparing various tactics of updating a model while trying to perform model checking.
doi_str_mv 10.1093/jigpal/jzl007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_232894244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jigpal/jzl007</oup_id><sourcerecordid>1184211791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-bdd4d789bdfcb7d8061368505d039dc64cca5261331103d56457a5ad60337e493</originalsourceid><addsrcrecordid>eNqFjz1PwzAQhi0EEqUwItaKicX0HH_FYxXxJRWxwGw5PqckhCbYKRL8elLCznSn06P3vYeQcwbXDAxfNvWmd-2y-W4B9AGZMa5yanIjDn93TUFLdkxOUmoAQOSZnJGLFbp-qD_D4rHD0C6K1-Df6u3mlBxVrk3h7G_OycvtzXNxT9dPdw_Fak0952qgJaJAnZsSK19qzEHtSyVIBG7QK-G9k9l45IwBR6mE1E46VMC5DsLwObmccvvYfexCGmzT7eJ2rLQZz8bfMyFGiE6Qj11KMVS2j_W7i1-Wgd2r20ndTuojfzXx3a7_B_0B7vhZdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232894244</pqid></control><display><type>article</type><title>Adaptive Model Checking</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Oxford Journals Online</source><creator>Groce, Alex ; Peled, Doron ; Yannakakis, Mihalis</creator><creatorcontrib>Groce, Alex ; Peled, Doron ; Yannakakis, Mihalis</creatorcontrib><description>We consider the case where inconsistencies are present between a system and its corresponding model, used for automatic verification. Such inconsistencies can be the result of modeling errors or recent modifications of the system. Despite such discrepancies, we can still attempt to perform automatic verification. In fact, as we show, we can sometimes exploit the verification results to assist in automatically learning the required updates to the model. In a related previous work, we have suggested the idea of black box checking, where verification starts without any model, and the model is obtained while repeated verification attempts are performed. Under the current assumptions, an existing inaccurate (but not completely obsolete) model is used to expedite the updates. We use techniques from black box testing and machine learning. We present an implementation of the proposed methodology called AMC (for Adaptive Model Checking). We discuss some experimental results, comparing various tactics of updating a model while trying to perform model checking.</description><identifier>ISSN: 1367-0751</identifier><identifier>EISSN: 1368-9894</identifier><identifier>DOI: 10.1093/jigpal/jzl007</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><ispartof>Logic journal of the IGPL, 2006-10, Vol.14 (5), p.729-744</ispartof><rights>The Author, 2006. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2006</rights><rights>Copyright Oxford University Press(England) Oct 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-bdd4d789bdfcb7d8061368505d039dc64cca5261331103d56457a5ad60337e493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Groce, Alex</creatorcontrib><creatorcontrib>Peled, Doron</creatorcontrib><creatorcontrib>Yannakakis, Mihalis</creatorcontrib><title>Adaptive Model Checking</title><title>Logic journal of the IGPL</title><description>We consider the case where inconsistencies are present between a system and its corresponding model, used for automatic verification. Such inconsistencies can be the result of modeling errors or recent modifications of the system. Despite such discrepancies, we can still attempt to perform automatic verification. In fact, as we show, we can sometimes exploit the verification results to assist in automatically learning the required updates to the model. In a related previous work, we have suggested the idea of black box checking, where verification starts without any model, and the model is obtained while repeated verification attempts are performed. Under the current assumptions, an existing inaccurate (but not completely obsolete) model is used to expedite the updates. We use techniques from black box testing and machine learning. We present an implementation of the proposed methodology called AMC (for Adaptive Model Checking). We discuss some experimental results, comparing various tactics of updating a model while trying to perform model checking.</description><issn>1367-0751</issn><issn>1368-9894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFjz1PwzAQhi0EEqUwItaKicX0HH_FYxXxJRWxwGw5PqckhCbYKRL8elLCznSn06P3vYeQcwbXDAxfNvWmd-2y-W4B9AGZMa5yanIjDn93TUFLdkxOUmoAQOSZnJGLFbp-qD_D4rHD0C6K1-Df6u3mlBxVrk3h7G_OycvtzXNxT9dPdw_Fak0952qgJaJAnZsSK19qzEHtSyVIBG7QK-G9k9l45IwBR6mE1E46VMC5DsLwObmccvvYfexCGmzT7eJ2rLQZz8bfMyFGiE6Qj11KMVS2j_W7i1-Wgd2r20ndTuojfzXx3a7_B_0B7vhZdQ</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Groce, Alex</creator><creator>Peled, Doron</creator><creator>Yannakakis, Mihalis</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20061001</creationdate><title>Adaptive Model Checking</title><author>Groce, Alex ; Peled, Doron ; Yannakakis, Mihalis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-bdd4d789bdfcb7d8061368505d039dc64cca5261331103d56457a5ad60337e493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groce, Alex</creatorcontrib><creatorcontrib>Peled, Doron</creatorcontrib><creatorcontrib>Yannakakis, Mihalis</creatorcontrib><collection>CrossRef</collection><jtitle>Logic journal of the IGPL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groce, Alex</au><au>Peled, Doron</au><au>Yannakakis, Mihalis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Model Checking</atitle><jtitle>Logic journal of the IGPL</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>14</volume><issue>5</issue><spage>729</spage><epage>744</epage><pages>729-744</pages><issn>1367-0751</issn><eissn>1368-9894</eissn><abstract>We consider the case where inconsistencies are present between a system and its corresponding model, used for automatic verification. Such inconsistencies can be the result of modeling errors or recent modifications of the system. Despite such discrepancies, we can still attempt to perform automatic verification. In fact, as we show, we can sometimes exploit the verification results to assist in automatically learning the required updates to the model. In a related previous work, we have suggested the idea of black box checking, where verification starts without any model, and the model is obtained while repeated verification attempts are performed. Under the current assumptions, an existing inaccurate (but not completely obsolete) model is used to expedite the updates. We use techniques from black box testing and machine learning. We present an implementation of the proposed methodology called AMC (for Adaptive Model Checking). We discuss some experimental results, comparing various tactics of updating a model while trying to perform model checking.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/jigpal/jzl007</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-0751
ispartof Logic journal of the IGPL, 2006-10, Vol.14 (5), p.729-744
issn 1367-0751
1368-9894
language eng
recordid cdi_proquest_journals_232894244
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Oxford Journals Online
title Adaptive Model Checking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Model%20Checking&rft.jtitle=Logic%20journal%20of%20the%20IGPL&rft.au=Groce,%20Alex&rft.date=2006-10-01&rft.volume=14&rft.issue=5&rft.spage=729&rft.epage=744&rft.pages=729-744&rft.issn=1367-0751&rft.eissn=1368-9894&rft_id=info:doi/10.1093/jigpal/jzl007&rft_dat=%3Cproquest_cross%3E1184211791%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-bdd4d789bdfcb7d8061368505d039dc64cca5261331103d56457a5ad60337e493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=232894244&rft_id=info:pmid/&rft_oup_id=10.1093/jigpal/jzl007&rfr_iscdi=true