Loading…
Structural Characterization, Optical Absorption and Electrical Conduction in Ordered Defect Compound Cu3In5Se9 of the Ternary Cu-In-Se Semiconductor System
The optical absorption coefficient α and electrical conduction as a function of temperature of the semiconductor Cu 3 In 5 Se 9 , an ordered defect compound which crystallizes in a tetragonal structure with space group P 4 ¯ 2 c , have been studied. The band gap energy E G varies between 0.994 eV an...
Saved in:
Published in: | Journal of electronic materials 2020, Vol.49 (1), p.419-428 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-9cd7080bde134d87c8f7abce2be74c18fefdd5371e9589852951624b5c64ca9b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-9cd7080bde134d87c8f7abce2be74c18fefdd5371e9589852951624b5c64ca9b3 |
container_end_page | 428 |
container_issue | 1 |
container_start_page | 419 |
container_title | Journal of electronic materials |
container_volume | 49 |
creator | Marín, G. Singh, D. P. Rincón, C. Wasim, S. M. Delgado, G. E. Enríquez, J. Essaleh, L. |
description | The optical absorption coefficient
α
and electrical conduction as a function of temperature of the semiconductor Cu
3
In
5
Se
9
, an ordered defect compound which crystallizes in a tetragonal structure with space group
P
4
¯
2
c
, have been studied. The band gap energy
E
G
varies between 0.994 eV and 0.983 eV in the temperature range between 25 and 300 K. The exponential variation of
α
with photon energy, observed just below the fundamental absorption edge, confirms the existence in Cu
3
In
5
Se
9
of the Urbach’s tail. The phonon energy
hν
p
associated with this tail is 101 meV. This is about three times higher than the highest optical phonon mode reported for Cu
3
In
5
Se
9
from infrared reflectivity spectra. The origin of this high energy is attributed due to the contribution of localized modes produced by structural disorders due to deviation from ideal stoichiometry and donor–acceptor defects pairs. From the analysis of electrical data of
n
-type Cu
3
In
5
Se
9
in the temperature range from 80 K to 300 K, it was found that above 100 K the electrical conduction is due to the activation of two shallow donor levels of about 40 meV and 80 meV, probably due to selenium vacancies. |
doi_str_mv | 10.1007/s11664-019-07816-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329108522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329108522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9cd7080bde134d87c8f7abce2be74c18fefdd5371e9589852951624b5c64ca9b3</originalsourceid><addsrcrecordid>eNp9kcFu1DAURS1EJYbSH2BliS0GvzhO7GUVCoxUaRZppe4sx36hqWbiYDuL8iv8LJ4GiR0rSz73XNm6hLwH_gk4bz8ngKapGQfNeKugYfwV2YGsBQPVPLwmOy4aYLIS8g15m9IT5yBBwY787nNcXV6jPdLu0UbrMsbpl81TmD_Sw5InV8j1kEJcznfUzp7eHNHl-EK6MPvin8k000P0GNHTLziWRIGnJaxF6Faxn2WPmoaR5kekdxhnG58LYPuZ9Uh7PE1u6wqR9s8p4-kduRjtMeHV3_OS3H-9ueu-s9vDt313fcucAJ2Zdr7lig8eQdRetU6NrR0cVgO2tQM14ui9FC2glkorWWkJTVUP0jW1s3oQl-TD1rvE8HPFlM1TWMv7jslUotLAi1OVVLWlXAwpRRzNEqdT-YQBbs4jmG0EU0YwLyMYXiSxSamE5x8Y_1X_x_oDVrqMaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329108522</pqid></control><display><type>article</type><title>Structural Characterization, Optical Absorption and Electrical Conduction in Ordered Defect Compound Cu3In5Se9 of the Ternary Cu-In-Se Semiconductor System</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Marín, G. ; Singh, D. P. ; Rincón, C. ; Wasim, S. M. ; Delgado, G. E. ; Enríquez, J. ; Essaleh, L.</creator><creatorcontrib>Marín, G. ; Singh, D. P. ; Rincón, C. ; Wasim, S. M. ; Delgado, G. E. ; Enríquez, J. ; Essaleh, L.</creatorcontrib><description>The optical absorption coefficient
α
and electrical conduction as a function of temperature of the semiconductor Cu
3
In
5
Se
9
, an ordered defect compound which crystallizes in a tetragonal structure with space group
P
4
¯
2
c
, have been studied. The band gap energy
E
G
varies between 0.994 eV and 0.983 eV in the temperature range between 25 and 300 K. The exponential variation of
α
with photon energy, observed just below the fundamental absorption edge, confirms the existence in Cu
3
In
5
Se
9
of the Urbach’s tail. The phonon energy
hν
p
associated with this tail is 101 meV. This is about three times higher than the highest optical phonon mode reported for Cu
3
In
5
Se
9
from infrared reflectivity spectra. The origin of this high energy is attributed due to the contribution of localized modes produced by structural disorders due to deviation from ideal stoichiometry and donor–acceptor defects pairs. From the analysis of electrical data of
n
-type Cu
3
In
5
Se
9
in the temperature range from 80 K to 300 K, it was found that above 100 K the electrical conduction is due to the activation of two shallow donor levels of about 40 meV and 80 meV, probably due to selenium vacancies.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07816-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorptivity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Crystal defects ; Electrical conduction ; Electrical properties ; Electronics and Microelectronics ; Energy gap ; Infrared spectra ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Phonons ; Selenium ; Solid State Physics ; Stoichiometry ; Structural analysis</subject><ispartof>Journal of electronic materials, 2020, Vol.49 (1), p.419-428</ispartof><rights>The Minerals, Metals & Materials Society 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9cd7080bde134d87c8f7abce2be74c18fefdd5371e9589852951624b5c64ca9b3</citedby><cites>FETCH-LOGICAL-c319t-9cd7080bde134d87c8f7abce2be74c18fefdd5371e9589852951624b5c64ca9b3</cites><orcidid>0000-0001-6614-9746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marín, G.</creatorcontrib><creatorcontrib>Singh, D. P.</creatorcontrib><creatorcontrib>Rincón, C.</creatorcontrib><creatorcontrib>Wasim, S. M.</creatorcontrib><creatorcontrib>Delgado, G. E.</creatorcontrib><creatorcontrib>Enríquez, J.</creatorcontrib><creatorcontrib>Essaleh, L.</creatorcontrib><title>Structural Characterization, Optical Absorption and Electrical Conduction in Ordered Defect Compound Cu3In5Se9 of the Ternary Cu-In-Se Semiconductor System</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The optical absorption coefficient
α
and electrical conduction as a function of temperature of the semiconductor Cu
3
In
5
Se
9
, an ordered defect compound which crystallizes in a tetragonal structure with space group
P
4
¯
2
c
, have been studied. The band gap energy
E
G
varies between 0.994 eV and 0.983 eV in the temperature range between 25 and 300 K. The exponential variation of
α
with photon energy, observed just below the fundamental absorption edge, confirms the existence in Cu
3
In
5
Se
9
of the Urbach’s tail. The phonon energy
hν
p
associated with this tail is 101 meV. This is about three times higher than the highest optical phonon mode reported for Cu
3
In
5
Se
9
from infrared reflectivity spectra. The origin of this high energy is attributed due to the contribution of localized modes produced by structural disorders due to deviation from ideal stoichiometry and donor–acceptor defects pairs. From the analysis of electrical data of
n
-type Cu
3
In
5
Se
9
in the temperature range from 80 K to 300 K, it was found that above 100 K the electrical conduction is due to the activation of two shallow donor levels of about 40 meV and 80 meV, probably due to selenium vacancies.</description><subject>Absorptivity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Crystal defects</subject><subject>Electrical conduction</subject><subject>Electrical properties</subject><subject>Electronics and Microelectronics</subject><subject>Energy gap</subject><subject>Infrared spectra</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Phonons</subject><subject>Selenium</subject><subject>Solid State Physics</subject><subject>Stoichiometry</subject><subject>Structural analysis</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAURS1EJYbSH2BliS0GvzhO7GUVCoxUaRZppe4sx36hqWbiYDuL8iv8LJ4GiR0rSz73XNm6hLwH_gk4bz8ngKapGQfNeKugYfwV2YGsBQPVPLwmOy4aYLIS8g15m9IT5yBBwY787nNcXV6jPdLu0UbrMsbpl81TmD_Sw5InV8j1kEJcznfUzp7eHNHl-EK6MPvin8k000P0GNHTLziWRIGnJaxF6Faxn2WPmoaR5kekdxhnG58LYPuZ9Uh7PE1u6wqR9s8p4-kduRjtMeHV3_OS3H-9ueu-s9vDt313fcucAJ2Zdr7lig8eQdRetU6NrR0cVgO2tQM14ui9FC2glkorWWkJTVUP0jW1s3oQl-TD1rvE8HPFlM1TWMv7jslUotLAi1OVVLWlXAwpRRzNEqdT-YQBbs4jmG0EU0YwLyMYXiSxSamE5x8Y_1X_x_oDVrqMaw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Marín, G.</creator><creator>Singh, D. P.</creator><creator>Rincón, C.</creator><creator>Wasim, S. M.</creator><creator>Delgado, G. E.</creator><creator>Enríquez, J.</creator><creator>Essaleh, L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-6614-9746</orcidid></search><sort><creationdate>2020</creationdate><title>Structural Characterization, Optical Absorption and Electrical Conduction in Ordered Defect Compound Cu3In5Se9 of the Ternary Cu-In-Se Semiconductor System</title><author>Marín, G. ; Singh, D. P. ; Rincón, C. ; Wasim, S. M. ; Delgado, G. E. ; Enríquez, J. ; Essaleh, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9cd7080bde134d87c8f7abce2be74c18fefdd5371e9589852951624b5c64ca9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorptivity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Crystal defects</topic><topic>Electrical conduction</topic><topic>Electrical properties</topic><topic>Electronics and Microelectronics</topic><topic>Energy gap</topic><topic>Infrared spectra</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Phonons</topic><topic>Selenium</topic><topic>Solid State Physics</topic><topic>Stoichiometry</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marín, G.</creatorcontrib><creatorcontrib>Singh, D. P.</creatorcontrib><creatorcontrib>Rincón, C.</creatorcontrib><creatorcontrib>Wasim, S. M.</creatorcontrib><creatorcontrib>Delgado, G. E.</creatorcontrib><creatorcontrib>Enríquez, J.</creatorcontrib><creatorcontrib>Essaleh, L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marín, G.</au><au>Singh, D. P.</au><au>Rincón, C.</au><au>Wasim, S. M.</au><au>Delgado, G. E.</au><au>Enríquez, J.</au><au>Essaleh, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Characterization, Optical Absorption and Electrical Conduction in Ordered Defect Compound Cu3In5Se9 of the Ternary Cu-In-Se Semiconductor System</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020</date><risdate>2020</risdate><volume>49</volume><issue>1</issue><spage>419</spage><epage>428</epage><pages>419-428</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The optical absorption coefficient
α
and electrical conduction as a function of temperature of the semiconductor Cu
3
In
5
Se
9
, an ordered defect compound which crystallizes in a tetragonal structure with space group
P
4
¯
2
c
, have been studied. The band gap energy
E
G
varies between 0.994 eV and 0.983 eV in the temperature range between 25 and 300 K. The exponential variation of
α
with photon energy, observed just below the fundamental absorption edge, confirms the existence in Cu
3
In
5
Se
9
of the Urbach’s tail. The phonon energy
hν
p
associated with this tail is 101 meV. This is about three times higher than the highest optical phonon mode reported for Cu
3
In
5
Se
9
from infrared reflectivity spectra. The origin of this high energy is attributed due to the contribution of localized modes produced by structural disorders due to deviation from ideal stoichiometry and donor–acceptor defects pairs. From the analysis of electrical data of
n
-type Cu
3
In
5
Se
9
in the temperature range from 80 K to 300 K, it was found that above 100 K the electrical conduction is due to the activation of two shallow donor levels of about 40 meV and 80 meV, probably due to selenium vacancies.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07816-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6614-9746</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2020, Vol.49 (1), p.419-428 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2329108522 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Absorptivity Characterization and Evaluation of Materials Chemistry and Materials Science Copper Crystal defects Electrical conduction Electrical properties Electronics and Microelectronics Energy gap Infrared spectra Instrumentation Materials Science Optical and Electronic Materials Phonons Selenium Solid State Physics Stoichiometry Structural analysis |
title | Structural Characterization, Optical Absorption and Electrical Conduction in Ordered Defect Compound Cu3In5Se9 of the Ternary Cu-In-Se Semiconductor System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Characterization,%20Optical%20Absorption%20and%20Electrical%20Conduction%20in%20Ordered%20Defect%20Compound%20Cu3In5Se9%20of%20the%20Ternary%20Cu-In-Se%20Semiconductor%20System&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Mar%C3%ADn,%20G.&rft.date=2020&rft.volume=49&rft.issue=1&rft.spage=419&rft.epage=428&rft.pages=419-428&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07816-0&rft_dat=%3Cproquest_cross%3E2329108522%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9cd7080bde134d87c8f7abce2be74c18fefdd5371e9589852951624b5c64ca9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2329108522&rft_id=info:pmid/&rfr_iscdi=true |