Loading…

Structural Characterization, Optical Absorption and Electrical Conduction in Ordered Defect Compound Cu3In5Se9 of the Ternary Cu-In-Se Semiconductor System

The optical absorption coefficient α and electrical conduction as a function of temperature of the semiconductor Cu 3 In 5 Se 9 , an ordered defect compound which crystallizes in a tetragonal structure with space group P 4 ¯ 2 c , have been studied. The band gap energy E G varies between 0.994 eV an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2020, Vol.49 (1), p.419-428
Main Authors: Marín, G., Singh, D. P., Rincón, C., Wasim, S. M., Delgado, G. E., Enríquez, J., Essaleh, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-9cd7080bde134d87c8f7abce2be74c18fefdd5371e9589852951624b5c64ca9b3
cites cdi_FETCH-LOGICAL-c319t-9cd7080bde134d87c8f7abce2be74c18fefdd5371e9589852951624b5c64ca9b3
container_end_page 428
container_issue 1
container_start_page 419
container_title Journal of electronic materials
container_volume 49
creator Marín, G.
Singh, D. P.
Rincón, C.
Wasim, S. M.
Delgado, G. E.
Enríquez, J.
Essaleh, L.
description The optical absorption coefficient α and electrical conduction as a function of temperature of the semiconductor Cu 3 In 5 Se 9 , an ordered defect compound which crystallizes in a tetragonal structure with space group P 4 ¯ 2 c , have been studied. The band gap energy E G varies between 0.994 eV and 0.983 eV in the temperature range between 25 and 300 K. The exponential variation of α with photon energy, observed just below the fundamental absorption edge, confirms the existence in Cu 3 In 5 Se 9 of the Urbach’s tail. The phonon energy hν p associated with this tail is 101 meV. This is about three times higher than the highest optical phonon mode reported for Cu 3 In 5 Se 9 from infrared reflectivity spectra. The origin of this high energy is attributed due to the contribution of localized modes produced by structural disorders due to deviation from ideal stoichiometry and donor–acceptor defects pairs. From the analysis of electrical data of n -type Cu 3 In 5 Se 9 in the temperature range from 80 K to 300 K, it was found that above 100 K the electrical conduction is due to the activation of two shallow donor levels of about 40 meV and 80 meV, probably due to selenium vacancies.
doi_str_mv 10.1007/s11664-019-07816-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329108522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329108522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9cd7080bde134d87c8f7abce2be74c18fefdd5371e9589852951624b5c64ca9b3</originalsourceid><addsrcrecordid>eNp9kcFu1DAURS1EJYbSH2BliS0GvzhO7GUVCoxUaRZppe4sx36hqWbiYDuL8iv8LJ4GiR0rSz73XNm6hLwH_gk4bz8ngKapGQfNeKugYfwV2YGsBQPVPLwmOy4aYLIS8g15m9IT5yBBwY787nNcXV6jPdLu0UbrMsbpl81TmD_Sw5InV8j1kEJcznfUzp7eHNHl-EK6MPvin8k000P0GNHTLziWRIGnJaxF6Faxn2WPmoaR5kekdxhnG58LYPuZ9Uh7PE1u6wqR9s8p4-kduRjtMeHV3_OS3H-9ueu-s9vDt313fcucAJ2Zdr7lig8eQdRetU6NrR0cVgO2tQM14ui9FC2glkorWWkJTVUP0jW1s3oQl-TD1rvE8HPFlM1TWMv7jslUotLAi1OVVLWlXAwpRRzNEqdT-YQBbs4jmG0EU0YwLyMYXiSxSamE5x8Y_1X_x_oDVrqMaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329108522</pqid></control><display><type>article</type><title>Structural Characterization, Optical Absorption and Electrical Conduction in Ordered Defect Compound Cu3In5Se9 of the Ternary Cu-In-Se Semiconductor System</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Marín, G. ; Singh, D. P. ; Rincón, C. ; Wasim, S. M. ; Delgado, G. E. ; Enríquez, J. ; Essaleh, L.</creator><creatorcontrib>Marín, G. ; Singh, D. P. ; Rincón, C. ; Wasim, S. M. ; Delgado, G. E. ; Enríquez, J. ; Essaleh, L.</creatorcontrib><description>The optical absorption coefficient α and electrical conduction as a function of temperature of the semiconductor Cu 3 In 5 Se 9 , an ordered defect compound which crystallizes in a tetragonal structure with space group P 4 ¯ 2 c , have been studied. The band gap energy E G varies between 0.994 eV and 0.983 eV in the temperature range between 25 and 300 K. The exponential variation of α with photon energy, observed just below the fundamental absorption edge, confirms the existence in Cu 3 In 5 Se 9 of the Urbach’s tail. The phonon energy hν p associated with this tail is 101 meV. This is about three times higher than the highest optical phonon mode reported for Cu 3 In 5 Se 9 from infrared reflectivity spectra. The origin of this high energy is attributed due to the contribution of localized modes produced by structural disorders due to deviation from ideal stoichiometry and donor–acceptor defects pairs. From the analysis of electrical data of n -type Cu 3 In 5 Se 9 in the temperature range from 80 K to 300 K, it was found that above 100 K the electrical conduction is due to the activation of two shallow donor levels of about 40 meV and 80 meV, probably due to selenium vacancies.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07816-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorptivity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Crystal defects ; Electrical conduction ; Electrical properties ; Electronics and Microelectronics ; Energy gap ; Infrared spectra ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Phonons ; Selenium ; Solid State Physics ; Stoichiometry ; Structural analysis</subject><ispartof>Journal of electronic materials, 2020, Vol.49 (1), p.419-428</ispartof><rights>The Minerals, Metals &amp; Materials Society 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9cd7080bde134d87c8f7abce2be74c18fefdd5371e9589852951624b5c64ca9b3</citedby><cites>FETCH-LOGICAL-c319t-9cd7080bde134d87c8f7abce2be74c18fefdd5371e9589852951624b5c64ca9b3</cites><orcidid>0000-0001-6614-9746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marín, G.</creatorcontrib><creatorcontrib>Singh, D. P.</creatorcontrib><creatorcontrib>Rincón, C.</creatorcontrib><creatorcontrib>Wasim, S. M.</creatorcontrib><creatorcontrib>Delgado, G. E.</creatorcontrib><creatorcontrib>Enríquez, J.</creatorcontrib><creatorcontrib>Essaleh, L.</creatorcontrib><title>Structural Characterization, Optical Absorption and Electrical Conduction in Ordered Defect Compound Cu3In5Se9 of the Ternary Cu-In-Se Semiconductor System</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The optical absorption coefficient α and electrical conduction as a function of temperature of the semiconductor Cu 3 In 5 Se 9 , an ordered defect compound which crystallizes in a tetragonal structure with space group P 4 ¯ 2 c , have been studied. The band gap energy E G varies between 0.994 eV and 0.983 eV in the temperature range between 25 and 300 K. The exponential variation of α with photon energy, observed just below the fundamental absorption edge, confirms the existence in Cu 3 In 5 Se 9 of the Urbach’s tail. The phonon energy hν p associated with this tail is 101 meV. This is about three times higher than the highest optical phonon mode reported for Cu 3 In 5 Se 9 from infrared reflectivity spectra. The origin of this high energy is attributed due to the contribution of localized modes produced by structural disorders due to deviation from ideal stoichiometry and donor–acceptor defects pairs. From the analysis of electrical data of n -type Cu 3 In 5 Se 9 in the temperature range from 80 K to 300 K, it was found that above 100 K the electrical conduction is due to the activation of two shallow donor levels of about 40 meV and 80 meV, probably due to selenium vacancies.</description><subject>Absorptivity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Crystal defects</subject><subject>Electrical conduction</subject><subject>Electrical properties</subject><subject>Electronics and Microelectronics</subject><subject>Energy gap</subject><subject>Infrared spectra</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Phonons</subject><subject>Selenium</subject><subject>Solid State Physics</subject><subject>Stoichiometry</subject><subject>Structural analysis</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAURS1EJYbSH2BliS0GvzhO7GUVCoxUaRZppe4sx36hqWbiYDuL8iv8LJ4GiR0rSz73XNm6hLwH_gk4bz8ngKapGQfNeKugYfwV2YGsBQPVPLwmOy4aYLIS8g15m9IT5yBBwY787nNcXV6jPdLu0UbrMsbpl81TmD_Sw5InV8j1kEJcznfUzp7eHNHl-EK6MPvin8k000P0GNHTLziWRIGnJaxF6Faxn2WPmoaR5kekdxhnG58LYPuZ9Uh7PE1u6wqR9s8p4-kduRjtMeHV3_OS3H-9ueu-s9vDt313fcucAJ2Zdr7lig8eQdRetU6NrR0cVgO2tQM14ui9FC2glkorWWkJTVUP0jW1s3oQl-TD1rvE8HPFlM1TWMv7jslUotLAi1OVVLWlXAwpRRzNEqdT-YQBbs4jmG0EU0YwLyMYXiSxSamE5x8Y_1X_x_oDVrqMaw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Marín, G.</creator><creator>Singh, D. P.</creator><creator>Rincón, C.</creator><creator>Wasim, S. M.</creator><creator>Delgado, G. E.</creator><creator>Enríquez, J.</creator><creator>Essaleh, L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-6614-9746</orcidid></search><sort><creationdate>2020</creationdate><title>Structural Characterization, Optical Absorption and Electrical Conduction in Ordered Defect Compound Cu3In5Se9 of the Ternary Cu-In-Se Semiconductor System</title><author>Marín, G. ; Singh, D. P. ; Rincón, C. ; Wasim, S. M. ; Delgado, G. E. ; Enríquez, J. ; Essaleh, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9cd7080bde134d87c8f7abce2be74c18fefdd5371e9589852951624b5c64ca9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorptivity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Crystal defects</topic><topic>Electrical conduction</topic><topic>Electrical properties</topic><topic>Electronics and Microelectronics</topic><topic>Energy gap</topic><topic>Infrared spectra</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Phonons</topic><topic>Selenium</topic><topic>Solid State Physics</topic><topic>Stoichiometry</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marín, G.</creatorcontrib><creatorcontrib>Singh, D. P.</creatorcontrib><creatorcontrib>Rincón, C.</creatorcontrib><creatorcontrib>Wasim, S. M.</creatorcontrib><creatorcontrib>Delgado, G. E.</creatorcontrib><creatorcontrib>Enríquez, J.</creatorcontrib><creatorcontrib>Essaleh, L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marín, G.</au><au>Singh, D. P.</au><au>Rincón, C.</au><au>Wasim, S. M.</au><au>Delgado, G. E.</au><au>Enríquez, J.</au><au>Essaleh, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Characterization, Optical Absorption and Electrical Conduction in Ordered Defect Compound Cu3In5Se9 of the Ternary Cu-In-Se Semiconductor System</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020</date><risdate>2020</risdate><volume>49</volume><issue>1</issue><spage>419</spage><epage>428</epage><pages>419-428</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The optical absorption coefficient α and electrical conduction as a function of temperature of the semiconductor Cu 3 In 5 Se 9 , an ordered defect compound which crystallizes in a tetragonal structure with space group P 4 ¯ 2 c , have been studied. The band gap energy E G varies between 0.994 eV and 0.983 eV in the temperature range between 25 and 300 K. The exponential variation of α with photon energy, observed just below the fundamental absorption edge, confirms the existence in Cu 3 In 5 Se 9 of the Urbach’s tail. The phonon energy hν p associated with this tail is 101 meV. This is about three times higher than the highest optical phonon mode reported for Cu 3 In 5 Se 9 from infrared reflectivity spectra. The origin of this high energy is attributed due to the contribution of localized modes produced by structural disorders due to deviation from ideal stoichiometry and donor–acceptor defects pairs. From the analysis of electrical data of n -type Cu 3 In 5 Se 9 in the temperature range from 80 K to 300 K, it was found that above 100 K the electrical conduction is due to the activation of two shallow donor levels of about 40 meV and 80 meV, probably due to selenium vacancies.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07816-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6614-9746</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2020, Vol.49 (1), p.419-428
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2329108522
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Absorptivity
Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper
Crystal defects
Electrical conduction
Electrical properties
Electronics and Microelectronics
Energy gap
Infrared spectra
Instrumentation
Materials Science
Optical and Electronic Materials
Phonons
Selenium
Solid State Physics
Stoichiometry
Structural analysis
title Structural Characterization, Optical Absorption and Electrical Conduction in Ordered Defect Compound Cu3In5Se9 of the Ternary Cu-In-Se Semiconductor System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Characterization,%20Optical%20Absorption%20and%20Electrical%20Conduction%20in%20Ordered%20Defect%20Compound%20Cu3In5Se9%20of%20the%20Ternary%20Cu-In-Se%20Semiconductor%20System&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Mar%C3%ADn,%20G.&rft.date=2020&rft.volume=49&rft.issue=1&rft.spage=419&rft.epage=428&rft.pages=419-428&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07816-0&rft_dat=%3Cproquest_cross%3E2329108522%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9cd7080bde134d87c8f7abce2be74c18fefdd5371e9589852951624b5c64ca9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2329108522&rft_id=info:pmid/&rfr_iscdi=true