Loading…

Saturn's North Polar Vortex Structure Extracted From Cloud Images by the Optical Flow Method

The paper presents velocity fields with ~3‐km spatial resolution of Saturn's north polar vortex (NPV) retrieved using the optical flow method from a sequence of polar‐projected cloud images captured by the Imaging Science Subsystem camera on board NASA's Cassini spacecraft. The fields of t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Planets 2019-11, Vol.124 (11), p.3041-3062
Main Authors: Liu, Tianshu, Sayanagi, Kunio M., Brueshaber, Shawn R., Blalock, John J., Ingersoll, Andrew P., Dyudina, Ulyana A., Ewald, Shawn P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3453-e044ac93f715edf0b9cca91d119863aac4f011b87dad2b3deadfd99a7319b81c3
cites cdi_FETCH-LOGICAL-c3453-e044ac93f715edf0b9cca91d119863aac4f011b87dad2b3deadfd99a7319b81c3
container_end_page 3062
container_issue 11
container_start_page 3041
container_title Journal of geophysical research. Planets
container_volume 124
creator Liu, Tianshu
Sayanagi, Kunio M.
Brueshaber, Shawn R.
Blalock, John J.
Ingersoll, Andrew P.
Dyudina, Ulyana A.
Ewald, Shawn P.
description The paper presents velocity fields with ~3‐km spatial resolution of Saturn's north polar vortex (NPV) retrieved using the optical flow method from a sequence of polar‐projected cloud images captured by the Imaging Science Subsystem camera on board NASA's Cassini spacecraft. The fields of the velocity magnitude, velocity variation, relative vorticity, divergence, and second invariant are determined to characterize the flow structures of the inner core of the NPV. The mean zonal and mean meridional velocity profiles of the NPV are compared with previous measurements. We also describe the relevant details of application of the optical flow method to planetary cloud‐tracking wind measurements. The mean zonal velocity profile is consistent with the previous measurements using correlation image velocimetry methods. The small but significant meridional velocity corresponds to outwardly spiraling streams observed in the region near the north pole (NP). The concentrated vorticity and second invariant within 1° planetographic latitude of the NP indicate strong rotational motion of the fluid. An analysis is presented to explore a possible physical origin of the observed spiraling node at the NP. Plain Language Summary A swirling flow pattern with wind speeds peaking at about 100 m/s was revealed in Saturn's north polar vortex in high‐resolution images captured by the Imaging Science Subsystem camera on board NASA's Cassini spacecraft in November 2012. Using sequences of images that show clouds in the north polar vortex, the motions of these clouds were analyzed to measure the wind speeds in the north polar region. The high‐precision wind measurements presented in the current report are enabled by the optical flow cloud‐tracking method. The time‐averaged wind field shows a well‐defined counterclockwise (cyclonic) vortex at the pole. In particular, the observed flow structures and wind shear near the pole indicate strong rotational motion of the north polar atmosphere with upwelling at the center. Key Points The high‐resolution velocity fields of Saturn's north polar vortex (NPV) are extracted from cloud images by using the optical flow method The vorticity, divergence, and second invariant are obtained to characterize the flow structures of the NPV The strong rotational motion of the fluid with upwelling is found near the pole
doi_str_mv 10.1029/2019JE005974
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329109599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329109599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3453-e044ac93f715edf0b9cca91d119863aac4f011b87dad2b3deadfd99a7319b81c3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGpv_oCABy-uZja73Z2jlG1tqVasehKWbJK1LVtTkyxt_72RKnhyLvOY-ZjHPELOgV0Di_EmZoCTgrEUs-SIdGLoY4TA2PGvZpidkp5zKxYqDyPgHfI2F761H5eOPhjrF_TRNMLS16D1js69bWVYa1rsvBXSa0WH1qzpoDGtouO1eNeOVnvqF5rONn4pRUOHjdnSe-0XRp2Rk1o0Tvd-epe8DIvnwV00nY3Gg9tpJHmS8kizJBESeZ1BqlXNKpRSICgAzPtcCJnUDKDKMyVUXHGlhaoVosg4YJWD5F1ycbi7seaz1c6XKxOeCpZlzOMQAqaIgbo6UNIa56yuy41droXdl8DK7wjLvxEGnB_w7bLR-3_ZcjJ6KmKIOedfRUxyCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329109599</pqid></control><display><type>article</type><title>Saturn's North Polar Vortex Structure Extracted From Cloud Images by the Optical Flow Method</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Alma/SFX Local Collection</source><creator>Liu, Tianshu ; Sayanagi, Kunio M. ; Brueshaber, Shawn R. ; Blalock, John J. ; Ingersoll, Andrew P. ; Dyudina, Ulyana A. ; Ewald, Shawn P.</creator><creatorcontrib>Liu, Tianshu ; Sayanagi, Kunio M. ; Brueshaber, Shawn R. ; Blalock, John J. ; Ingersoll, Andrew P. ; Dyudina, Ulyana A. ; Ewald, Shawn P.</creatorcontrib><description>The paper presents velocity fields with ~3‐km spatial resolution of Saturn's north polar vortex (NPV) retrieved using the optical flow method from a sequence of polar‐projected cloud images captured by the Imaging Science Subsystem camera on board NASA's Cassini spacecraft. The fields of the velocity magnitude, velocity variation, relative vorticity, divergence, and second invariant are determined to characterize the flow structures of the inner core of the NPV. The mean zonal and mean meridional velocity profiles of the NPV are compared with previous measurements. We also describe the relevant details of application of the optical flow method to planetary cloud‐tracking wind measurements. The mean zonal velocity profile is consistent with the previous measurements using correlation image velocimetry methods. The small but significant meridional velocity corresponds to outwardly spiraling streams observed in the region near the north pole (NP). The concentrated vorticity and second invariant within 1° planetographic latitude of the NP indicate strong rotational motion of the fluid. An analysis is presented to explore a possible physical origin of the observed spiraling node at the NP. Plain Language Summary A swirling flow pattern with wind speeds peaking at about 100 m/s was revealed in Saturn's north polar vortex in high‐resolution images captured by the Imaging Science Subsystem camera on board NASA's Cassini spacecraft in November 2012. Using sequences of images that show clouds in the north polar vortex, the motions of these clouds were analyzed to measure the wind speeds in the north polar region. The high‐precision wind measurements presented in the current report are enabled by the optical flow cloud‐tracking method. The time‐averaged wind field shows a well‐defined counterclockwise (cyclonic) vortex at the pole. In particular, the observed flow structures and wind shear near the pole indicate strong rotational motion of the north polar atmosphere with upwelling at the center. Key Points The high‐resolution velocity fields of Saturn's north polar vortex (NPV) are extracted from cloud images by using the optical flow method The vorticity, divergence, and second invariant are obtained to characterize the flow structures of the NPV The strong rotational motion of the fluid with upwelling is found near the pole</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1029/2019JE005974</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Cameras ; Cassini mission ; cloud tracking ; Clouds ; Correlation analysis ; Cyclonic vortexes ; Divergence ; Flow pattern ; flow structure ; Fluid flow ; Invariants ; north polar vortex ; North Pole ; optical flow ; Optical flow (image analysis) ; Polar environments ; Polar regions ; Polar vortex ; Relative vorticity ; Saturn ; Spacecraft ; Spatial resolution ; Subsystems ; Swirling ; Tracking ; Upwelling ; Velocimetry ; Velocity ; Velocity distribution ; Vortex structure ; Vortices ; Vorticity ; Wind measurement ; Wind shear ; Wind speed</subject><ispartof>Journal of geophysical research. Planets, 2019-11, Vol.124 (11), p.3041-3062</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3453-e044ac93f715edf0b9cca91d119863aac4f011b87dad2b3deadfd99a7319b81c3</citedby><cites>FETCH-LOGICAL-c3453-e044ac93f715edf0b9cca91d119863aac4f011b87dad2b3deadfd99a7319b81c3</cites><orcidid>0000-0001-8729-0992 ; 0000-0001-6297-1660 ; 0000-0002-1567-9154 ; 0000-0002-2035-9198 ; 0000-0002-7460-1074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Liu, Tianshu</creatorcontrib><creatorcontrib>Sayanagi, Kunio M.</creatorcontrib><creatorcontrib>Brueshaber, Shawn R.</creatorcontrib><creatorcontrib>Blalock, John J.</creatorcontrib><creatorcontrib>Ingersoll, Andrew P.</creatorcontrib><creatorcontrib>Dyudina, Ulyana A.</creatorcontrib><creatorcontrib>Ewald, Shawn P.</creatorcontrib><title>Saturn's North Polar Vortex Structure Extracted From Cloud Images by the Optical Flow Method</title><title>Journal of geophysical research. Planets</title><description>The paper presents velocity fields with ~3‐km spatial resolution of Saturn's north polar vortex (NPV) retrieved using the optical flow method from a sequence of polar‐projected cloud images captured by the Imaging Science Subsystem camera on board NASA's Cassini spacecraft. The fields of the velocity magnitude, velocity variation, relative vorticity, divergence, and second invariant are determined to characterize the flow structures of the inner core of the NPV. The mean zonal and mean meridional velocity profiles of the NPV are compared with previous measurements. We also describe the relevant details of application of the optical flow method to planetary cloud‐tracking wind measurements. The mean zonal velocity profile is consistent with the previous measurements using correlation image velocimetry methods. The small but significant meridional velocity corresponds to outwardly spiraling streams observed in the region near the north pole (NP). The concentrated vorticity and second invariant within 1° planetographic latitude of the NP indicate strong rotational motion of the fluid. An analysis is presented to explore a possible physical origin of the observed spiraling node at the NP. Plain Language Summary A swirling flow pattern with wind speeds peaking at about 100 m/s was revealed in Saturn's north polar vortex in high‐resolution images captured by the Imaging Science Subsystem camera on board NASA's Cassini spacecraft in November 2012. Using sequences of images that show clouds in the north polar vortex, the motions of these clouds were analyzed to measure the wind speeds in the north polar region. The high‐precision wind measurements presented in the current report are enabled by the optical flow cloud‐tracking method. The time‐averaged wind field shows a well‐defined counterclockwise (cyclonic) vortex at the pole. In particular, the observed flow structures and wind shear near the pole indicate strong rotational motion of the north polar atmosphere with upwelling at the center. Key Points The high‐resolution velocity fields of Saturn's north polar vortex (NPV) are extracted from cloud images by using the optical flow method The vorticity, divergence, and second invariant are obtained to characterize the flow structures of the NPV The strong rotational motion of the fluid with upwelling is found near the pole</description><subject>Cameras</subject><subject>Cassini mission</subject><subject>cloud tracking</subject><subject>Clouds</subject><subject>Correlation analysis</subject><subject>Cyclonic vortexes</subject><subject>Divergence</subject><subject>Flow pattern</subject><subject>flow structure</subject><subject>Fluid flow</subject><subject>Invariants</subject><subject>north polar vortex</subject><subject>North Pole</subject><subject>optical flow</subject><subject>Optical flow (image analysis)</subject><subject>Polar environments</subject><subject>Polar regions</subject><subject>Polar vortex</subject><subject>Relative vorticity</subject><subject>Saturn</subject><subject>Spacecraft</subject><subject>Spatial resolution</subject><subject>Subsystems</subject><subject>Swirling</subject><subject>Tracking</subject><subject>Upwelling</subject><subject>Velocimetry</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Vortex structure</subject><subject>Vortices</subject><subject>Vorticity</subject><subject>Wind measurement</subject><subject>Wind shear</subject><subject>Wind speed</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWGpv_oCABy-uZja73Z2jlG1tqVasehKWbJK1LVtTkyxt_72RKnhyLvOY-ZjHPELOgV0Di_EmZoCTgrEUs-SIdGLoY4TA2PGvZpidkp5zKxYqDyPgHfI2F761H5eOPhjrF_TRNMLS16D1js69bWVYa1rsvBXSa0WH1qzpoDGtouO1eNeOVnvqF5rONn4pRUOHjdnSe-0XRp2Rk1o0Tvd-epe8DIvnwV00nY3Gg9tpJHmS8kizJBESeZ1BqlXNKpRSICgAzPtcCJnUDKDKMyVUXHGlhaoVosg4YJWD5F1ycbi7seaz1c6XKxOeCpZlzOMQAqaIgbo6UNIa56yuy41droXdl8DK7wjLvxEGnB_w7bLR-3_ZcjJ6KmKIOedfRUxyCw</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Liu, Tianshu</creator><creator>Sayanagi, Kunio M.</creator><creator>Brueshaber, Shawn R.</creator><creator>Blalock, John J.</creator><creator>Ingersoll, Andrew P.</creator><creator>Dyudina, Ulyana A.</creator><creator>Ewald, Shawn P.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8729-0992</orcidid><orcidid>https://orcid.org/0000-0001-6297-1660</orcidid><orcidid>https://orcid.org/0000-0002-1567-9154</orcidid><orcidid>https://orcid.org/0000-0002-2035-9198</orcidid><orcidid>https://orcid.org/0000-0002-7460-1074</orcidid></search><sort><creationdate>201911</creationdate><title>Saturn's North Polar Vortex Structure Extracted From Cloud Images by the Optical Flow Method</title><author>Liu, Tianshu ; Sayanagi, Kunio M. ; Brueshaber, Shawn R. ; Blalock, John J. ; Ingersoll, Andrew P. ; Dyudina, Ulyana A. ; Ewald, Shawn P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3453-e044ac93f715edf0b9cca91d119863aac4f011b87dad2b3deadfd99a7319b81c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cameras</topic><topic>Cassini mission</topic><topic>cloud tracking</topic><topic>Clouds</topic><topic>Correlation analysis</topic><topic>Cyclonic vortexes</topic><topic>Divergence</topic><topic>Flow pattern</topic><topic>flow structure</topic><topic>Fluid flow</topic><topic>Invariants</topic><topic>north polar vortex</topic><topic>North Pole</topic><topic>optical flow</topic><topic>Optical flow (image analysis)</topic><topic>Polar environments</topic><topic>Polar regions</topic><topic>Polar vortex</topic><topic>Relative vorticity</topic><topic>Saturn</topic><topic>Spacecraft</topic><topic>Spatial resolution</topic><topic>Subsystems</topic><topic>Swirling</topic><topic>Tracking</topic><topic>Upwelling</topic><topic>Velocimetry</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Vortex structure</topic><topic>Vortices</topic><topic>Vorticity</topic><topic>Wind measurement</topic><topic>Wind shear</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tianshu</creatorcontrib><creatorcontrib>Sayanagi, Kunio M.</creatorcontrib><creatorcontrib>Brueshaber, Shawn R.</creatorcontrib><creatorcontrib>Blalock, John J.</creatorcontrib><creatorcontrib>Ingersoll, Andrew P.</creatorcontrib><creatorcontrib>Dyudina, Ulyana A.</creatorcontrib><creatorcontrib>Ewald, Shawn P.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tianshu</au><au>Sayanagi, Kunio M.</au><au>Brueshaber, Shawn R.</au><au>Blalock, John J.</au><au>Ingersoll, Andrew P.</au><au>Dyudina, Ulyana A.</au><au>Ewald, Shawn P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saturn's North Polar Vortex Structure Extracted From Cloud Images by the Optical Flow Method</atitle><jtitle>Journal of geophysical research. Planets</jtitle><date>2019-11</date><risdate>2019</risdate><volume>124</volume><issue>11</issue><spage>3041</spage><epage>3062</epage><pages>3041-3062</pages><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>The paper presents velocity fields with ~3‐km spatial resolution of Saturn's north polar vortex (NPV) retrieved using the optical flow method from a sequence of polar‐projected cloud images captured by the Imaging Science Subsystem camera on board NASA's Cassini spacecraft. The fields of the velocity magnitude, velocity variation, relative vorticity, divergence, and second invariant are determined to characterize the flow structures of the inner core of the NPV. The mean zonal and mean meridional velocity profiles of the NPV are compared with previous measurements. We also describe the relevant details of application of the optical flow method to planetary cloud‐tracking wind measurements. The mean zonal velocity profile is consistent with the previous measurements using correlation image velocimetry methods. The small but significant meridional velocity corresponds to outwardly spiraling streams observed in the region near the north pole (NP). The concentrated vorticity and second invariant within 1° planetographic latitude of the NP indicate strong rotational motion of the fluid. An analysis is presented to explore a possible physical origin of the observed spiraling node at the NP. Plain Language Summary A swirling flow pattern with wind speeds peaking at about 100 m/s was revealed in Saturn's north polar vortex in high‐resolution images captured by the Imaging Science Subsystem camera on board NASA's Cassini spacecraft in November 2012. Using sequences of images that show clouds in the north polar vortex, the motions of these clouds were analyzed to measure the wind speeds in the north polar region. The high‐precision wind measurements presented in the current report are enabled by the optical flow cloud‐tracking method. The time‐averaged wind field shows a well‐defined counterclockwise (cyclonic) vortex at the pole. In particular, the observed flow structures and wind shear near the pole indicate strong rotational motion of the north polar atmosphere with upwelling at the center. Key Points The high‐resolution velocity fields of Saturn's north polar vortex (NPV) are extracted from cloud images by using the optical flow method The vorticity, divergence, and second invariant are obtained to characterize the flow structures of the NPV The strong rotational motion of the fluid with upwelling is found near the pole</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2019JE005974</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8729-0992</orcidid><orcidid>https://orcid.org/0000-0001-6297-1660</orcidid><orcidid>https://orcid.org/0000-0002-1567-9154</orcidid><orcidid>https://orcid.org/0000-0002-2035-9198</orcidid><orcidid>https://orcid.org/0000-0002-7460-1074</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9097
ispartof Journal of geophysical research. Planets, 2019-11, Vol.124 (11), p.3041-3062
issn 2169-9097
2169-9100
language eng
recordid cdi_proquest_journals_2329109599
source Wiley-Blackwell Read & Publish Collection; Alma/SFX Local Collection
subjects Cameras
Cassini mission
cloud tracking
Clouds
Correlation analysis
Cyclonic vortexes
Divergence
Flow pattern
flow structure
Fluid flow
Invariants
north polar vortex
North Pole
optical flow
Optical flow (image analysis)
Polar environments
Polar regions
Polar vortex
Relative vorticity
Saturn
Spacecraft
Spatial resolution
Subsystems
Swirling
Tracking
Upwelling
Velocimetry
Velocity
Velocity distribution
Vortex structure
Vortices
Vorticity
Wind measurement
Wind shear
Wind speed
title Saturn's North Polar Vortex Structure Extracted From Cloud Images by the Optical Flow Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saturn's%20North%20Polar%20Vortex%20Structure%20Extracted%20From%20Cloud%20Images%20by%20the%20Optical%20Flow%20Method&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Liu,%20Tianshu&rft.date=2019-11&rft.volume=124&rft.issue=11&rft.spage=3041&rft.epage=3062&rft.pages=3041-3062&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1029/2019JE005974&rft_dat=%3Cproquest_cross%3E2329109599%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3453-e044ac93f715edf0b9cca91d119863aac4f011b87dad2b3deadfd99a7319b81c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2329109599&rft_id=info:pmid/&rfr_iscdi=true