Loading…
Structuring and evaluating decision support processes to enhance the robustness of complex human–natural systems
Decision-making in the context of complex human–natural systems requires a transition towards robust model-based inferences which are effective despite uncertainties of human and climate driven change. Supporting robust decision-making needs a sequence of interactive methodological choices for setti...
Saved in:
Published in: | Environmental modelling & software : with environment data news 2020-01, Vol.123, p.104551, Article 104551 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-d59f3fbc37dd666bd98639774dcb19b0c8dbe740216960706a1a03343f64cc953 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-d59f3fbc37dd666bd98639774dcb19b0c8dbe740216960706a1a03343f64cc953 |
container_end_page | |
container_issue | |
container_start_page | 104551 |
container_title | Environmental modelling & software : with environment data news |
container_volume | 123 |
creator | Moallemi, Enayat A. Zare, Fateme Reed, Patrick M. Elsawah, Sondoss Ryan, Michael J. Bryan, Brett A. |
description | Decision-making in the context of complex human–natural systems requires a transition towards robust model-based inferences which are effective despite uncertainties of human and climate driven change. Supporting robust decision-making needs a sequence of interactive methodological choices for setting the problem context, framing the decision problem, evaluating possible solutions, and making recommendations. These methodological choices are influenced by a variety of human factors, originating from cognitive, behavioural, and mental frameworks of stakeholders. We review a broad array of methodological constructs to better emphasise the choices that are most appropriate given different levels of knowledge. Consideration of these methodological constructs clarifies how problems can be perceived and framed in rival decision support paths emerging from the cumulative effects of individual methodological choices and the challenging human factors that shape decision-making under deep uncertainty. We conclude that the careful consideration of rival decision support paths can enhance the confidence in decision recommendations and illuminate sensitivities to the methodological choices.
•Achieving sustainability under global change requires robust decisions.•We review a broad array of methodological constructs in robust decision making.•We analyse human factors that can lead to biased choices and misleading inferences.•We analyse the combined effects of methods and human factors on robust inferences. |
doi_str_mv | 10.1016/j.envsoft.2019.104551 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329299630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815219306905</els_id><sourcerecordid>2329299630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-d59f3fbc37dd666bd98639774dcb19b0c8dbe740216960706a1a03343f64cc953</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhiMEEqVwBCRLrFPsOHHqFUIVL6kSC2BtOfaEJmrt4HEquuMO3JCT4KrsWc37n5kvyy4ZnTHKxHU_A7dF38ZZQZlMubKq2FE2YfOa56IuxHHyuSjzOauK0-wMsaeUJr-cZOElhtHEMXTunWhnCWz1etRxH1owHXbeERyHwYdIhuANIAKS6Am4lXYGSFwBCb4ZMbpUI74lxm-GNXyS1bjR7ufr2-mkr9cEdxhhg-fZSavXCBd_dpq93d-9Lh7z5fPD0-J2mRvO65jbSra8bQyvrRVCNFbOBZd1XVrTMNlQM7cN1CUtmJCC1lRopinnJW9FaYys-DS7Ouimsz9GwKh6PwaXVqqCF7KQUnCauqpDlwkeMUCrhtBtdNgpRtUer-rVH161x6sOeNPczWEO0gvbDoJC00ECYrsAJirru38UfgHXTIn3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329299630</pqid></control><display><type>article</type><title>Structuring and evaluating decision support processes to enhance the robustness of complex human–natural systems</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Moallemi, Enayat A. ; Zare, Fateme ; Reed, Patrick M. ; Elsawah, Sondoss ; Ryan, Michael J. ; Bryan, Brett A.</creator><creatorcontrib>Moallemi, Enayat A. ; Zare, Fateme ; Reed, Patrick M. ; Elsawah, Sondoss ; Ryan, Michael J. ; Bryan, Brett A.</creatorcontrib><description>Decision-making in the context of complex human–natural systems requires a transition towards robust model-based inferences which are effective despite uncertainties of human and climate driven change. Supporting robust decision-making needs a sequence of interactive methodological choices for setting the problem context, framing the decision problem, evaluating possible solutions, and making recommendations. These methodological choices are influenced by a variety of human factors, originating from cognitive, behavioural, and mental frameworks of stakeholders. We review a broad array of methodological constructs to better emphasise the choices that are most appropriate given different levels of knowledge. Consideration of these methodological constructs clarifies how problems can be perceived and framed in rival decision support paths emerging from the cumulative effects of individual methodological choices and the challenging human factors that shape decision-making under deep uncertainty. We conclude that the careful consideration of rival decision support paths can enhance the confidence in decision recommendations and illuminate sensitivities to the methodological choices.
•Achieving sustainability under global change requires robust decisions.•We review a broad array of methodological constructs in robust decision making.•We analyse human factors that can lead to biased choices and misleading inferences.•We analyse the combined effects of methods and human factors on robust inferences.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2019.104551</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Climate change ; Cognitive ability ; Cognitive biases and heuristics ; Decision analysis ; Decision making ; Decision support systems ; Deep uncertainty ; Exploratory modelling ; Human behavior ; Human factors ; Robustness ; Scenario discovery ; System effectiveness ; Uncertainty</subject><ispartof>Environmental modelling & software : with environment data news, 2020-01, Vol.123, p.104551, Article 104551</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-d59f3fbc37dd666bd98639774dcb19b0c8dbe740216960706a1a03343f64cc953</citedby><cites>FETCH-LOGICAL-c337t-d59f3fbc37dd666bd98639774dcb19b0c8dbe740216960706a1a03343f64cc953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moallemi, Enayat A.</creatorcontrib><creatorcontrib>Zare, Fateme</creatorcontrib><creatorcontrib>Reed, Patrick M.</creatorcontrib><creatorcontrib>Elsawah, Sondoss</creatorcontrib><creatorcontrib>Ryan, Michael J.</creatorcontrib><creatorcontrib>Bryan, Brett A.</creatorcontrib><title>Structuring and evaluating decision support processes to enhance the robustness of complex human–natural systems</title><title>Environmental modelling & software : with environment data news</title><description>Decision-making in the context of complex human–natural systems requires a transition towards robust model-based inferences which are effective despite uncertainties of human and climate driven change. Supporting robust decision-making needs a sequence of interactive methodological choices for setting the problem context, framing the decision problem, evaluating possible solutions, and making recommendations. These methodological choices are influenced by a variety of human factors, originating from cognitive, behavioural, and mental frameworks of stakeholders. We review a broad array of methodological constructs to better emphasise the choices that are most appropriate given different levels of knowledge. Consideration of these methodological constructs clarifies how problems can be perceived and framed in rival decision support paths emerging from the cumulative effects of individual methodological choices and the challenging human factors that shape decision-making under deep uncertainty. We conclude that the careful consideration of rival decision support paths can enhance the confidence in decision recommendations and illuminate sensitivities to the methodological choices.
•Achieving sustainability under global change requires robust decisions.•We review a broad array of methodological constructs in robust decision making.•We analyse human factors that can lead to biased choices and misleading inferences.•We analyse the combined effects of methods and human factors on robust inferences.</description><subject>Climate change</subject><subject>Cognitive ability</subject><subject>Cognitive biases and heuristics</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Deep uncertainty</subject><subject>Exploratory modelling</subject><subject>Human behavior</subject><subject>Human factors</subject><subject>Robustness</subject><subject>Scenario discovery</subject><subject>System effectiveness</subject><subject>Uncertainty</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQhiMEEqVwBCRLrFPsOHHqFUIVL6kSC2BtOfaEJmrt4HEquuMO3JCT4KrsWc37n5kvyy4ZnTHKxHU_A7dF38ZZQZlMubKq2FE2YfOa56IuxHHyuSjzOauK0-wMsaeUJr-cZOElhtHEMXTunWhnCWz1etRxH1owHXbeERyHwYdIhuANIAKS6Am4lXYGSFwBCb4ZMbpUI74lxm-GNXyS1bjR7ufr2-mkr9cEdxhhg-fZSavXCBd_dpq93d-9Lh7z5fPD0-J2mRvO65jbSra8bQyvrRVCNFbOBZd1XVrTMNlQM7cN1CUtmJCC1lRopinnJW9FaYys-DS7Ouimsz9GwKh6PwaXVqqCF7KQUnCauqpDlwkeMUCrhtBtdNgpRtUer-rVH161x6sOeNPczWEO0gvbDoJC00ECYrsAJirru38UfgHXTIn3</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Moallemi, Enayat A.</creator><creator>Zare, Fateme</creator><creator>Reed, Patrick M.</creator><creator>Elsawah, Sondoss</creator><creator>Ryan, Michael J.</creator><creator>Bryan, Brett A.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope></search><sort><creationdate>202001</creationdate><title>Structuring and evaluating decision support processes to enhance the robustness of complex human–natural systems</title><author>Moallemi, Enayat A. ; Zare, Fateme ; Reed, Patrick M. ; Elsawah, Sondoss ; Ryan, Michael J. ; Bryan, Brett A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-d59f3fbc37dd666bd98639774dcb19b0c8dbe740216960706a1a03343f64cc953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Climate change</topic><topic>Cognitive ability</topic><topic>Cognitive biases and heuristics</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Deep uncertainty</topic><topic>Exploratory modelling</topic><topic>Human behavior</topic><topic>Human factors</topic><topic>Robustness</topic><topic>Scenario discovery</topic><topic>System effectiveness</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moallemi, Enayat A.</creatorcontrib><creatorcontrib>Zare, Fateme</creatorcontrib><creatorcontrib>Reed, Patrick M.</creatorcontrib><creatorcontrib>Elsawah, Sondoss</creatorcontrib><creatorcontrib>Ryan, Michael J.</creatorcontrib><creatorcontrib>Bryan, Brett A.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling & software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moallemi, Enayat A.</au><au>Zare, Fateme</au><au>Reed, Patrick M.</au><au>Elsawah, Sondoss</au><au>Ryan, Michael J.</au><au>Bryan, Brett A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structuring and evaluating decision support processes to enhance the robustness of complex human–natural systems</atitle><jtitle>Environmental modelling & software : with environment data news</jtitle><date>2020-01</date><risdate>2020</risdate><volume>123</volume><spage>104551</spage><pages>104551-</pages><artnum>104551</artnum><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>Decision-making in the context of complex human–natural systems requires a transition towards robust model-based inferences which are effective despite uncertainties of human and climate driven change. Supporting robust decision-making needs a sequence of interactive methodological choices for setting the problem context, framing the decision problem, evaluating possible solutions, and making recommendations. These methodological choices are influenced by a variety of human factors, originating from cognitive, behavioural, and mental frameworks of stakeholders. We review a broad array of methodological constructs to better emphasise the choices that are most appropriate given different levels of knowledge. Consideration of these methodological constructs clarifies how problems can be perceived and framed in rival decision support paths emerging from the cumulative effects of individual methodological choices and the challenging human factors that shape decision-making under deep uncertainty. We conclude that the careful consideration of rival decision support paths can enhance the confidence in decision recommendations and illuminate sensitivities to the methodological choices.
•Achieving sustainability under global change requires robust decisions.•We review a broad array of methodological constructs in robust decision making.•We analyse human factors that can lead to biased choices and misleading inferences.•We analyse the combined effects of methods and human factors on robust inferences.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2019.104551</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-8152 |
ispartof | Environmental modelling & software : with environment data news, 2020-01, Vol.123, p.104551, Article 104551 |
issn | 1364-8152 1873-6726 |
language | eng |
recordid | cdi_proquest_journals_2329299630 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Climate change Cognitive ability Cognitive biases and heuristics Decision analysis Decision making Decision support systems Deep uncertainty Exploratory modelling Human behavior Human factors Robustness Scenario discovery System effectiveness Uncertainty |
title | Structuring and evaluating decision support processes to enhance the robustness of complex human–natural systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structuring%20and%20evaluating%20decision%20support%20processes%20to%20enhance%20the%20robustness%20of%20complex%20human%E2%80%93natural%20systems&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Moallemi,%20Enayat%20A.&rft.date=2020-01&rft.volume=123&rft.spage=104551&rft.pages=104551-&rft.artnum=104551&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2019.104551&rft_dat=%3Cproquest_cross%3E2329299630%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-d59f3fbc37dd666bd98639774dcb19b0c8dbe740216960706a1a03343f64cc953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2329299630&rft_id=info:pmid/&rfr_iscdi=true |