Loading…

Likelihood learning in modified Dirichlet Process Mixture Model for video analysis

•Likelihood learning in Dirichlet Process Mixture Model using a new inference scheme.•The inference scheme applied to object motion modeling and trajectory path learning.•The proposed new sampling achieves better computation time than Gibbs sampling.•Useful for learning data distributions that are s...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition letters 2019-12, Vol.128, p.211-219
Main Authors: Kumaran, Santhosh Kelathodi, Chakravarty, Adyasha, Dogra, Debi Prosad, Roy, Partha Pratim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-2d75cdb340c17d06b31a24a2a462314e9e78727fcbed28fddeaf2600e43863853
cites cdi_FETCH-LOGICAL-c334t-2d75cdb340c17d06b31a24a2a462314e9e78727fcbed28fddeaf2600e43863853
container_end_page 219
container_issue
container_start_page 211
container_title Pattern recognition letters
container_volume 128
creator Kumaran, Santhosh Kelathodi
Chakravarty, Adyasha
Dogra, Debi Prosad
Roy, Partha Pratim
description •Likelihood learning in Dirichlet Process Mixture Model using a new inference scheme.•The inference scheme applied to object motion modeling and trajectory path learning.•The proposed new sampling achieves better computation time than Gibbs sampling.•Useful for learning data distributions that are spatially apart.•Proposed method achieves better accuracy and computation time than state-of-the-art. Rapid advancement in machine learning has expedited computer vision-based research applicable to traffic analysis. A 2-stage inference process has been proposed in this paper to learn data distributions applicable to object motion modeling and path learning. In the first stage, a posterior probability learning has been used to get the initial clusters. In the subsequent stage, we use an inference method for likelihood learning by introducing a velocity parameter. It decides the speed at which the model converges to obtain the final clusters. A new sampling method has been proposed that performs better as compared to the Gibbs sampling in terms of computation time. The results demonstrate that the technique has relevance in computer vision applications. The proposed method performs better than the state-of-the-art unsupervised learning methods.
doi_str_mv 10.1016/j.patrec.2019.09.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329720250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865519302557</els_id><sourcerecordid>2329720250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-2d75cdb340c17d06b31a24a2a462314e9e78727fcbed28fddeaf2600e43863853</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wEXA9Yw3j3ltBKlPaFFE1yFN7tiM00lNpsX-e6eMa-HA3XzncO4h5JJByoDl10260X1Ak3JgVQqDIDsiE1YWPCmElMdkMmBFUuZZdkrOYmwAIBdVOSFvc_eFrVt5b2mLOnSu-6Suo2tvXe3Q0jsXnFm12NPX4A3GSBfup98GpAtvsaW1D3TnLHqqO93uo4vn5KTWbcSLvzslHw_377OnZP7y-Dy7nSdGCNkn3BaZsUshwbDCQr4UTHOpuZY5F0xihcXQv6jNEi0va2tR1zwHQCnKXJSZmJKrMXcT_PcWY68avw1Diai44FXBgWcwUHKkTPAxBqzVJri1DnvFQB3WU40a11OH9RQMgkP4zWjD4YOdw6CicdgZtG5Ae2W9-z_gF1Yzens</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329720250</pqid></control><display><type>article</type><title>Likelihood learning in modified Dirichlet Process Mixture Model for video analysis</title><source>ScienceDirect Freedom Collection</source><creator>Kumaran, Santhosh Kelathodi ; Chakravarty, Adyasha ; Dogra, Debi Prosad ; Roy, Partha Pratim</creator><creatorcontrib>Kumaran, Santhosh Kelathodi ; Chakravarty, Adyasha ; Dogra, Debi Prosad ; Roy, Partha Pratim</creatorcontrib><description>•Likelihood learning in Dirichlet Process Mixture Model using a new inference scheme.•The inference scheme applied to object motion modeling and trajectory path learning.•The proposed new sampling achieves better computation time than Gibbs sampling.•Useful for learning data distributions that are spatially apart.•Proposed method achieves better accuracy and computation time than state-of-the-art. Rapid advancement in machine learning has expedited computer vision-based research applicable to traffic analysis. A 2-stage inference process has been proposed in this paper to learn data distributions applicable to object motion modeling and path learning. In the first stage, a posterior probability learning has been used to get the initial clusters. In the subsequent stage, we use an inference method for likelihood learning by introducing a velocity parameter. It decides the speed at which the model converges to obtain the final clusters. A new sampling method has been proposed that performs better as compared to the Gibbs sampling in terms of computation time. The results demonstrate that the technique has relevance in computer vision applications. The proposed method performs better than the state-of-the-art unsupervised learning methods.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2019.09.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bayesian inference ; Clusters ; Computer vision ; Conditional probability ; Dirichlet problem ; Dirichlet Process Mixture Model ; Inference ; Learning algorithms ; Machine learning ; Object motion ; Probabilistic models ; Probability learning ; Sampling ; Statistical machine learning ; Traffic analysis ; Unsupervised learning</subject><ispartof>Pattern recognition letters, 2019-12, Vol.128, p.211-219</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Dec 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-2d75cdb340c17d06b31a24a2a462314e9e78727fcbed28fddeaf2600e43863853</citedby><cites>FETCH-LOGICAL-c334t-2d75cdb340c17d06b31a24a2a462314e9e78727fcbed28fddeaf2600e43863853</cites><orcidid>0000-0002-3904-732X ; 0000-0002-8100-8244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kumaran, Santhosh Kelathodi</creatorcontrib><creatorcontrib>Chakravarty, Adyasha</creatorcontrib><creatorcontrib>Dogra, Debi Prosad</creatorcontrib><creatorcontrib>Roy, Partha Pratim</creatorcontrib><title>Likelihood learning in modified Dirichlet Process Mixture Model for video analysis</title><title>Pattern recognition letters</title><description>•Likelihood learning in Dirichlet Process Mixture Model using a new inference scheme.•The inference scheme applied to object motion modeling and trajectory path learning.•The proposed new sampling achieves better computation time than Gibbs sampling.•Useful for learning data distributions that are spatially apart.•Proposed method achieves better accuracy and computation time than state-of-the-art. Rapid advancement in machine learning has expedited computer vision-based research applicable to traffic analysis. A 2-stage inference process has been proposed in this paper to learn data distributions applicable to object motion modeling and path learning. In the first stage, a posterior probability learning has been used to get the initial clusters. In the subsequent stage, we use an inference method for likelihood learning by introducing a velocity parameter. It decides the speed at which the model converges to obtain the final clusters. A new sampling method has been proposed that performs better as compared to the Gibbs sampling in terms of computation time. The results demonstrate that the technique has relevance in computer vision applications. The proposed method performs better than the state-of-the-art unsupervised learning methods.</description><subject>Bayesian inference</subject><subject>Clusters</subject><subject>Computer vision</subject><subject>Conditional probability</subject><subject>Dirichlet problem</subject><subject>Dirichlet Process Mixture Model</subject><subject>Inference</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Object motion</subject><subject>Probabilistic models</subject><subject>Probability learning</subject><subject>Sampling</subject><subject>Statistical machine learning</subject><subject>Traffic analysis</subject><subject>Unsupervised learning</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wEXA9Yw3j3ltBKlPaFFE1yFN7tiM00lNpsX-e6eMa-HA3XzncO4h5JJByoDl10260X1Ak3JgVQqDIDsiE1YWPCmElMdkMmBFUuZZdkrOYmwAIBdVOSFvc_eFrVt5b2mLOnSu-6Suo2tvXe3Q0jsXnFm12NPX4A3GSBfup98GpAtvsaW1D3TnLHqqO93uo4vn5KTWbcSLvzslHw_377OnZP7y-Dy7nSdGCNkn3BaZsUshwbDCQr4UTHOpuZY5F0xihcXQv6jNEi0va2tR1zwHQCnKXJSZmJKrMXcT_PcWY68avw1Diai44FXBgWcwUHKkTPAxBqzVJri1DnvFQB3WU40a11OH9RQMgkP4zWjD4YOdw6CicdgZtG5Ae2W9-z_gF1Yzens</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Kumaran, Santhosh Kelathodi</creator><creator>Chakravarty, Adyasha</creator><creator>Dogra, Debi Prosad</creator><creator>Roy, Partha Pratim</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3904-732X</orcidid><orcidid>https://orcid.org/0000-0002-8100-8244</orcidid></search><sort><creationdate>20191201</creationdate><title>Likelihood learning in modified Dirichlet Process Mixture Model for video analysis</title><author>Kumaran, Santhosh Kelathodi ; Chakravarty, Adyasha ; Dogra, Debi Prosad ; Roy, Partha Pratim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-2d75cdb340c17d06b31a24a2a462314e9e78727fcbed28fddeaf2600e43863853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian inference</topic><topic>Clusters</topic><topic>Computer vision</topic><topic>Conditional probability</topic><topic>Dirichlet problem</topic><topic>Dirichlet Process Mixture Model</topic><topic>Inference</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Object motion</topic><topic>Probabilistic models</topic><topic>Probability learning</topic><topic>Sampling</topic><topic>Statistical machine learning</topic><topic>Traffic analysis</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumaran, Santhosh Kelathodi</creatorcontrib><creatorcontrib>Chakravarty, Adyasha</creatorcontrib><creatorcontrib>Dogra, Debi Prosad</creatorcontrib><creatorcontrib>Roy, Partha Pratim</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumaran, Santhosh Kelathodi</au><au>Chakravarty, Adyasha</au><au>Dogra, Debi Prosad</au><au>Roy, Partha Pratim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Likelihood learning in modified Dirichlet Process Mixture Model for video analysis</atitle><jtitle>Pattern recognition letters</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>128</volume><spage>211</spage><epage>219</epage><pages>211-219</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•Likelihood learning in Dirichlet Process Mixture Model using a new inference scheme.•The inference scheme applied to object motion modeling and trajectory path learning.•The proposed new sampling achieves better computation time than Gibbs sampling.•Useful for learning data distributions that are spatially apart.•Proposed method achieves better accuracy and computation time than state-of-the-art. Rapid advancement in machine learning has expedited computer vision-based research applicable to traffic analysis. A 2-stage inference process has been proposed in this paper to learn data distributions applicable to object motion modeling and path learning. In the first stage, a posterior probability learning has been used to get the initial clusters. In the subsequent stage, we use an inference method for likelihood learning by introducing a velocity parameter. It decides the speed at which the model converges to obtain the final clusters. A new sampling method has been proposed that performs better as compared to the Gibbs sampling in terms of computation time. The results demonstrate that the technique has relevance in computer vision applications. The proposed method performs better than the state-of-the-art unsupervised learning methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2019.09.005</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3904-732X</orcidid><orcidid>https://orcid.org/0000-0002-8100-8244</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2019-12, Vol.128, p.211-219
issn 0167-8655
1872-7344
language eng
recordid cdi_proquest_journals_2329720250
source ScienceDirect Freedom Collection
subjects Bayesian inference
Clusters
Computer vision
Conditional probability
Dirichlet problem
Dirichlet Process Mixture Model
Inference
Learning algorithms
Machine learning
Object motion
Probabilistic models
Probability learning
Sampling
Statistical machine learning
Traffic analysis
Unsupervised learning
title Likelihood learning in modified Dirichlet Process Mixture Model for video analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Likelihood%20learning%20in%20modified%20Dirichlet%20Process%20Mixture%20Model%20for%20video%20analysis&rft.jtitle=Pattern%20recognition%20letters&rft.au=Kumaran,%20Santhosh%20Kelathodi&rft.date=2019-12-01&rft.volume=128&rft.spage=211&rft.epage=219&rft.pages=211-219&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2019.09.005&rft_dat=%3Cproquest_cross%3E2329720250%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-2d75cdb340c17d06b31a24a2a462314e9e78727fcbed28fddeaf2600e43863853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2329720250&rft_id=info:pmid/&rfr_iscdi=true