Loading…
Likelihood learning in modified Dirichlet Process Mixture Model for video analysis
•Likelihood learning in Dirichlet Process Mixture Model using a new inference scheme.•The inference scheme applied to object motion modeling and trajectory path learning.•The proposed new sampling achieves better computation time than Gibbs sampling.•Useful for learning data distributions that are s...
Saved in:
Published in: | Pattern recognition letters 2019-12, Vol.128, p.211-219 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-2d75cdb340c17d06b31a24a2a462314e9e78727fcbed28fddeaf2600e43863853 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-2d75cdb340c17d06b31a24a2a462314e9e78727fcbed28fddeaf2600e43863853 |
container_end_page | 219 |
container_issue | |
container_start_page | 211 |
container_title | Pattern recognition letters |
container_volume | 128 |
creator | Kumaran, Santhosh Kelathodi Chakravarty, Adyasha Dogra, Debi Prosad Roy, Partha Pratim |
description | •Likelihood learning in Dirichlet Process Mixture Model using a new inference scheme.•The inference scheme applied to object motion modeling and trajectory path learning.•The proposed new sampling achieves better computation time than Gibbs sampling.•Useful for learning data distributions that are spatially apart.•Proposed method achieves better accuracy and computation time than state-of-the-art.
Rapid advancement in machine learning has expedited computer vision-based research applicable to traffic analysis. A 2-stage inference process has been proposed in this paper to learn data distributions applicable to object motion modeling and path learning. In the first stage, a posterior probability learning has been used to get the initial clusters. In the subsequent stage, we use an inference method for likelihood learning by introducing a velocity parameter. It decides the speed at which the model converges to obtain the final clusters. A new sampling method has been proposed that performs better as compared to the Gibbs sampling in terms of computation time. The results demonstrate that the technique has relevance in computer vision applications. The proposed method performs better than the state-of-the-art unsupervised learning methods. |
doi_str_mv | 10.1016/j.patrec.2019.09.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329720250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865519302557</els_id><sourcerecordid>2329720250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-2d75cdb340c17d06b31a24a2a462314e9e78727fcbed28fddeaf2600e43863853</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wEXA9Yw3j3ltBKlPaFFE1yFN7tiM00lNpsX-e6eMa-HA3XzncO4h5JJByoDl10260X1Ak3JgVQqDIDsiE1YWPCmElMdkMmBFUuZZdkrOYmwAIBdVOSFvc_eFrVt5b2mLOnSu-6Suo2tvXe3Q0jsXnFm12NPX4A3GSBfup98GpAtvsaW1D3TnLHqqO93uo4vn5KTWbcSLvzslHw_377OnZP7y-Dy7nSdGCNkn3BaZsUshwbDCQr4UTHOpuZY5F0xihcXQv6jNEi0va2tR1zwHQCnKXJSZmJKrMXcT_PcWY68avw1Diai44FXBgWcwUHKkTPAxBqzVJri1DnvFQB3WU40a11OH9RQMgkP4zWjD4YOdw6CicdgZtG5Ae2W9-z_gF1Yzens</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329720250</pqid></control><display><type>article</type><title>Likelihood learning in modified Dirichlet Process Mixture Model for video analysis</title><source>ScienceDirect Freedom Collection</source><creator>Kumaran, Santhosh Kelathodi ; Chakravarty, Adyasha ; Dogra, Debi Prosad ; Roy, Partha Pratim</creator><creatorcontrib>Kumaran, Santhosh Kelathodi ; Chakravarty, Adyasha ; Dogra, Debi Prosad ; Roy, Partha Pratim</creatorcontrib><description>•Likelihood learning in Dirichlet Process Mixture Model using a new inference scheme.•The inference scheme applied to object motion modeling and trajectory path learning.•The proposed new sampling achieves better computation time than Gibbs sampling.•Useful for learning data distributions that are spatially apart.•Proposed method achieves better accuracy and computation time than state-of-the-art.
Rapid advancement in machine learning has expedited computer vision-based research applicable to traffic analysis. A 2-stage inference process has been proposed in this paper to learn data distributions applicable to object motion modeling and path learning. In the first stage, a posterior probability learning has been used to get the initial clusters. In the subsequent stage, we use an inference method for likelihood learning by introducing a velocity parameter. It decides the speed at which the model converges to obtain the final clusters. A new sampling method has been proposed that performs better as compared to the Gibbs sampling in terms of computation time. The results demonstrate that the technique has relevance in computer vision applications. The proposed method performs better than the state-of-the-art unsupervised learning methods.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2019.09.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bayesian inference ; Clusters ; Computer vision ; Conditional probability ; Dirichlet problem ; Dirichlet Process Mixture Model ; Inference ; Learning algorithms ; Machine learning ; Object motion ; Probabilistic models ; Probability learning ; Sampling ; Statistical machine learning ; Traffic analysis ; Unsupervised learning</subject><ispartof>Pattern recognition letters, 2019-12, Vol.128, p.211-219</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Dec 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-2d75cdb340c17d06b31a24a2a462314e9e78727fcbed28fddeaf2600e43863853</citedby><cites>FETCH-LOGICAL-c334t-2d75cdb340c17d06b31a24a2a462314e9e78727fcbed28fddeaf2600e43863853</cites><orcidid>0000-0002-3904-732X ; 0000-0002-8100-8244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kumaran, Santhosh Kelathodi</creatorcontrib><creatorcontrib>Chakravarty, Adyasha</creatorcontrib><creatorcontrib>Dogra, Debi Prosad</creatorcontrib><creatorcontrib>Roy, Partha Pratim</creatorcontrib><title>Likelihood learning in modified Dirichlet Process Mixture Model for video analysis</title><title>Pattern recognition letters</title><description>•Likelihood learning in Dirichlet Process Mixture Model using a new inference scheme.•The inference scheme applied to object motion modeling and trajectory path learning.•The proposed new sampling achieves better computation time than Gibbs sampling.•Useful for learning data distributions that are spatially apart.•Proposed method achieves better accuracy and computation time than state-of-the-art.
Rapid advancement in machine learning has expedited computer vision-based research applicable to traffic analysis. A 2-stage inference process has been proposed in this paper to learn data distributions applicable to object motion modeling and path learning. In the first stage, a posterior probability learning has been used to get the initial clusters. In the subsequent stage, we use an inference method for likelihood learning by introducing a velocity parameter. It decides the speed at which the model converges to obtain the final clusters. A new sampling method has been proposed that performs better as compared to the Gibbs sampling in terms of computation time. The results demonstrate that the technique has relevance in computer vision applications. The proposed method performs better than the state-of-the-art unsupervised learning methods.</description><subject>Bayesian inference</subject><subject>Clusters</subject><subject>Computer vision</subject><subject>Conditional probability</subject><subject>Dirichlet problem</subject><subject>Dirichlet Process Mixture Model</subject><subject>Inference</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Object motion</subject><subject>Probabilistic models</subject><subject>Probability learning</subject><subject>Sampling</subject><subject>Statistical machine learning</subject><subject>Traffic analysis</subject><subject>Unsupervised learning</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wEXA9Yw3j3ltBKlPaFFE1yFN7tiM00lNpsX-e6eMa-HA3XzncO4h5JJByoDl10260X1Ak3JgVQqDIDsiE1YWPCmElMdkMmBFUuZZdkrOYmwAIBdVOSFvc_eFrVt5b2mLOnSu-6Suo2tvXe3Q0jsXnFm12NPX4A3GSBfup98GpAtvsaW1D3TnLHqqO93uo4vn5KTWbcSLvzslHw_377OnZP7y-Dy7nSdGCNkn3BaZsUshwbDCQr4UTHOpuZY5F0xihcXQv6jNEi0va2tR1zwHQCnKXJSZmJKrMXcT_PcWY68avw1Diai44FXBgWcwUHKkTPAxBqzVJri1DnvFQB3WU40a11OH9RQMgkP4zWjD4YOdw6CicdgZtG5Ae2W9-z_gF1Yzens</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Kumaran, Santhosh Kelathodi</creator><creator>Chakravarty, Adyasha</creator><creator>Dogra, Debi Prosad</creator><creator>Roy, Partha Pratim</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3904-732X</orcidid><orcidid>https://orcid.org/0000-0002-8100-8244</orcidid></search><sort><creationdate>20191201</creationdate><title>Likelihood learning in modified Dirichlet Process Mixture Model for video analysis</title><author>Kumaran, Santhosh Kelathodi ; Chakravarty, Adyasha ; Dogra, Debi Prosad ; Roy, Partha Pratim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-2d75cdb340c17d06b31a24a2a462314e9e78727fcbed28fddeaf2600e43863853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian inference</topic><topic>Clusters</topic><topic>Computer vision</topic><topic>Conditional probability</topic><topic>Dirichlet problem</topic><topic>Dirichlet Process Mixture Model</topic><topic>Inference</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Object motion</topic><topic>Probabilistic models</topic><topic>Probability learning</topic><topic>Sampling</topic><topic>Statistical machine learning</topic><topic>Traffic analysis</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumaran, Santhosh Kelathodi</creatorcontrib><creatorcontrib>Chakravarty, Adyasha</creatorcontrib><creatorcontrib>Dogra, Debi Prosad</creatorcontrib><creatorcontrib>Roy, Partha Pratim</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumaran, Santhosh Kelathodi</au><au>Chakravarty, Adyasha</au><au>Dogra, Debi Prosad</au><au>Roy, Partha Pratim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Likelihood learning in modified Dirichlet Process Mixture Model for video analysis</atitle><jtitle>Pattern recognition letters</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>128</volume><spage>211</spage><epage>219</epage><pages>211-219</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•Likelihood learning in Dirichlet Process Mixture Model using a new inference scheme.•The inference scheme applied to object motion modeling and trajectory path learning.•The proposed new sampling achieves better computation time than Gibbs sampling.•Useful for learning data distributions that are spatially apart.•Proposed method achieves better accuracy and computation time than state-of-the-art.
Rapid advancement in machine learning has expedited computer vision-based research applicable to traffic analysis. A 2-stage inference process has been proposed in this paper to learn data distributions applicable to object motion modeling and path learning. In the first stage, a posterior probability learning has been used to get the initial clusters. In the subsequent stage, we use an inference method for likelihood learning by introducing a velocity parameter. It decides the speed at which the model converges to obtain the final clusters. A new sampling method has been proposed that performs better as compared to the Gibbs sampling in terms of computation time. The results demonstrate that the technique has relevance in computer vision applications. The proposed method performs better than the state-of-the-art unsupervised learning methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2019.09.005</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3904-732X</orcidid><orcidid>https://orcid.org/0000-0002-8100-8244</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 2019-12, Vol.128, p.211-219 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_proquest_journals_2329720250 |
source | ScienceDirect Freedom Collection |
subjects | Bayesian inference Clusters Computer vision Conditional probability Dirichlet problem Dirichlet Process Mixture Model Inference Learning algorithms Machine learning Object motion Probabilistic models Probability learning Sampling Statistical machine learning Traffic analysis Unsupervised learning |
title | Likelihood learning in modified Dirichlet Process Mixture Model for video analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Likelihood%20learning%20in%20modified%20Dirichlet%20Process%20Mixture%20Model%20for%20video%20analysis&rft.jtitle=Pattern%20recognition%20letters&rft.au=Kumaran,%20Santhosh%20Kelathodi&rft.date=2019-12-01&rft.volume=128&rft.spage=211&rft.epage=219&rft.pages=211-219&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2019.09.005&rft_dat=%3Cproquest_cross%3E2329720250%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-2d75cdb340c17d06b31a24a2a462314e9e78727fcbed28fddeaf2600e43863853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2329720250&rft_id=info:pmid/&rfr_iscdi=true |