Loading…

Short carbon fibre-reinforced epoxy foams with isotropic cellular structure and anisotropic mechanical response produced from liquid foam templates

In this work, we show that mechanically anisotropic short carbon fibre (sCF)-reinforced epoxy foams with an isotropic cellular structure can be fabricated from liquid foam templates. Short carbon fibres were mechanically frothed in an uncured liquid epoxy resin to produce an air-in-resin liquid foam...

Full description

Saved in:
Bibliographic Details
Published in:Composites science and technology 2019-11, Vol.184, p.107871, Article 107871
Main Authors: Song, Wenzhe, Konstantellos, Georgios, Li, Diyang, Lee, Koon-Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c437t-231c8eb5e49c083d2b5109746929996740992d09f7f6bf96948bce2629ba1e393
cites cdi_FETCH-LOGICAL-c437t-231c8eb5e49c083d2b5109746929996740992d09f7f6bf96948bce2629ba1e393
container_end_page
container_issue
container_start_page 107871
container_title Composites science and technology
container_volume 184
creator Song, Wenzhe
Konstantellos, Georgios
Li, Diyang
Lee, Koon-Yang
description In this work, we show that mechanically anisotropic short carbon fibre (sCF)-reinforced epoxy foams with an isotropic cellular structure can be fabricated from liquid foam templates. Short carbon fibres were mechanically frothed in an uncured liquid epoxy resin to produce an air-in-resin liquid foam template, followed by subsequent polymerisation. Fracture toughness test showed that the incorporation of short carbon fibres into the epoxy foams led to a significant increase in their critical stress intensity factors. It was also observed that neat epoxy foams failed catastrophically whilst sCF-reinforced epoxy foams failed in a progressive manner. Compression test further showed that the in-plane compressive moduli of the mechanically frothed sCF-reinforced epoxy foams were significantly higher than their out-of-plane compressive moduli, signifying an anisotropic mechanical response. This anisotropic mechanical response stemmed from the radial flow generated by the high intensity mechanical frothing process, facilitating the preferential orientation of the added short carbon fibres in-plane whilst the entrained air bubbles during the mechanical frothing process were in equilibrium with the surrounding uncured liquid epoxy resin, resulting in an epoxy foam with an isotropic (spherical) cellular structure.
doi_str_mv 10.1016/j.compscitech.2019.107871
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2329721487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353819313144</els_id><sourcerecordid>2329721487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-231c8eb5e49c083d2b5109746929996740992d09f7f6bf96948bce2629ba1e393</originalsourceid><addsrcrecordid>eNqNUcuO1DAQtFastMMu_2DEOYPtPJw-ohEvaaU9LJwtx2lrPEribNsB9jv4YTwMEhw5tFrdqqruUjH2Woq9FLJ7e9q7OK_JhYzuuFdCQtnrXssrtpO9hkqKVrxgO6G6rqrbur9hL1M6CSF0C2rHfj4eI2XuLA1x4T4MhBVhWHwkhyPHNf545j7aOfHvIR95SDFTXIPjDqdpmyzxlGlzeSPkdhlL_YXM5acyOztxwrTGJSFfKY7bWdpTnPkUnrYw_j7AM87rZDOmO3bt7ZTw1Z9-y75-eP_l8Km6f_j4-fDuvnJNrXOlaul6HFpswIm-HtXQSgG66UABQKcbAaBGAV77bvDQQdMPDlWnYLASa6hv2ZuLbvnpacOUzSlutJSTRtUKtJJNrwsKLihHMSVCb1YKs6VnI4U5Z2BO5p8MzDkDc8mgcA8XLhYb3wKSKShciv1A6LIZY_gPlV86epmb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329721487</pqid></control><display><type>article</type><title>Short carbon fibre-reinforced epoxy foams with isotropic cellular structure and anisotropic mechanical response produced from liquid foam templates</title><source>ScienceDirect Journals</source><creator>Song, Wenzhe ; Konstantellos, Georgios ; Li, Diyang ; Lee, Koon-Yang</creator><creatorcontrib>Song, Wenzhe ; Konstantellos, Georgios ; Li, Diyang ; Lee, Koon-Yang</creatorcontrib><description>In this work, we show that mechanically anisotropic short carbon fibre (sCF)-reinforced epoxy foams with an isotropic cellular structure can be fabricated from liquid foam templates. Short carbon fibres were mechanically frothed in an uncured liquid epoxy resin to produce an air-in-resin liquid foam template, followed by subsequent polymerisation. Fracture toughness test showed that the incorporation of short carbon fibres into the epoxy foams led to a significant increase in their critical stress intensity factors. It was also observed that neat epoxy foams failed catastrophically whilst sCF-reinforced epoxy foams failed in a progressive manner. Compression test further showed that the in-plane compressive moduli of the mechanically frothed sCF-reinforced epoxy foams were significantly higher than their out-of-plane compressive moduli, signifying an anisotropic mechanical response. This anisotropic mechanical response stemmed from the radial flow generated by the high intensity mechanical frothing process, facilitating the preferential orientation of the added short carbon fibres in-plane whilst the entrained air bubbles during the mechanical frothing process were in equilibrium with the surrounding uncured liquid epoxy resin, resulting in an epoxy foam with an isotropic (spherical) cellular structure.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2019.107871</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Air bubbles ; Air entrainment ; Anisotropy ; Carbon fiber reinforced plastics ; Carbon fibers ; Carbon-epoxy composites ; Cellular structure ; Compression tests ; Epoxy resins ; Fiber reinforced composites ; Fiber reinforced polymers ; Fractography ; Fracture toughness ; Frothing ; Mechanical analysis ; Mechanical frothing ; Plastic foam ; Radial flow ; Short-fibre composites ; Stress intensity factors</subject><ispartof>Composites science and technology, 2019-11, Vol.184, p.107871, Article 107871</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-231c8eb5e49c083d2b5109746929996740992d09f7f6bf96948bce2629ba1e393</citedby><cites>FETCH-LOGICAL-c437t-231c8eb5e49c083d2b5109746929996740992d09f7f6bf96948bce2629ba1e393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Song, Wenzhe</creatorcontrib><creatorcontrib>Konstantellos, Georgios</creatorcontrib><creatorcontrib>Li, Diyang</creatorcontrib><creatorcontrib>Lee, Koon-Yang</creatorcontrib><title>Short carbon fibre-reinforced epoxy foams with isotropic cellular structure and anisotropic mechanical response produced from liquid foam templates</title><title>Composites science and technology</title><description>In this work, we show that mechanically anisotropic short carbon fibre (sCF)-reinforced epoxy foams with an isotropic cellular structure can be fabricated from liquid foam templates. Short carbon fibres were mechanically frothed in an uncured liquid epoxy resin to produce an air-in-resin liquid foam template, followed by subsequent polymerisation. Fracture toughness test showed that the incorporation of short carbon fibres into the epoxy foams led to a significant increase in their critical stress intensity factors. It was also observed that neat epoxy foams failed catastrophically whilst sCF-reinforced epoxy foams failed in a progressive manner. Compression test further showed that the in-plane compressive moduli of the mechanically frothed sCF-reinforced epoxy foams were significantly higher than their out-of-plane compressive moduli, signifying an anisotropic mechanical response. This anisotropic mechanical response stemmed from the radial flow generated by the high intensity mechanical frothing process, facilitating the preferential orientation of the added short carbon fibres in-plane whilst the entrained air bubbles during the mechanical frothing process were in equilibrium with the surrounding uncured liquid epoxy resin, resulting in an epoxy foam with an isotropic (spherical) cellular structure.</description><subject>Air bubbles</subject><subject>Air entrainment</subject><subject>Anisotropy</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Carbon-epoxy composites</subject><subject>Cellular structure</subject><subject>Compression tests</subject><subject>Epoxy resins</subject><subject>Fiber reinforced composites</subject><subject>Fiber reinforced polymers</subject><subject>Fractography</subject><subject>Fracture toughness</subject><subject>Frothing</subject><subject>Mechanical analysis</subject><subject>Mechanical frothing</subject><subject>Plastic foam</subject><subject>Radial flow</subject><subject>Short-fibre composites</subject><subject>Stress intensity factors</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUcuO1DAQtFastMMu_2DEOYPtPJw-ohEvaaU9LJwtx2lrPEribNsB9jv4YTwMEhw5tFrdqqruUjH2Woq9FLJ7e9q7OK_JhYzuuFdCQtnrXssrtpO9hkqKVrxgO6G6rqrbur9hL1M6CSF0C2rHfj4eI2XuLA1x4T4MhBVhWHwkhyPHNf545j7aOfHvIR95SDFTXIPjDqdpmyzxlGlzeSPkdhlL_YXM5acyOztxwrTGJSFfKY7bWdpTnPkUnrYw_j7AM87rZDOmO3bt7ZTw1Z9-y75-eP_l8Km6f_j4-fDuvnJNrXOlaul6HFpswIm-HtXQSgG66UABQKcbAaBGAV77bvDQQdMPDlWnYLASa6hv2ZuLbvnpacOUzSlutJSTRtUKtJJNrwsKLihHMSVCb1YKs6VnI4U5Z2BO5p8MzDkDc8mgcA8XLhYb3wKSKShciv1A6LIZY_gPlV86epmb</recordid><startdate>20191110</startdate><enddate>20191110</enddate><creator>Song, Wenzhe</creator><creator>Konstantellos, Georgios</creator><creator>Li, Diyang</creator><creator>Lee, Koon-Yang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20191110</creationdate><title>Short carbon fibre-reinforced epoxy foams with isotropic cellular structure and anisotropic mechanical response produced from liquid foam templates</title><author>Song, Wenzhe ; Konstantellos, Georgios ; Li, Diyang ; Lee, Koon-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-231c8eb5e49c083d2b5109746929996740992d09f7f6bf96948bce2629ba1e393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air bubbles</topic><topic>Air entrainment</topic><topic>Anisotropy</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Carbon-epoxy composites</topic><topic>Cellular structure</topic><topic>Compression tests</topic><topic>Epoxy resins</topic><topic>Fiber reinforced composites</topic><topic>Fiber reinforced polymers</topic><topic>Fractography</topic><topic>Fracture toughness</topic><topic>Frothing</topic><topic>Mechanical analysis</topic><topic>Mechanical frothing</topic><topic>Plastic foam</topic><topic>Radial flow</topic><topic>Short-fibre composites</topic><topic>Stress intensity factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Wenzhe</creatorcontrib><creatorcontrib>Konstantellos, Georgios</creatorcontrib><creatorcontrib>Li, Diyang</creatorcontrib><creatorcontrib>Lee, Koon-Yang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Wenzhe</au><au>Konstantellos, Georgios</au><au>Li, Diyang</au><au>Lee, Koon-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short carbon fibre-reinforced epoxy foams with isotropic cellular structure and anisotropic mechanical response produced from liquid foam templates</atitle><jtitle>Composites science and technology</jtitle><date>2019-11-10</date><risdate>2019</risdate><volume>184</volume><spage>107871</spage><pages>107871-</pages><artnum>107871</artnum><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>In this work, we show that mechanically anisotropic short carbon fibre (sCF)-reinforced epoxy foams with an isotropic cellular structure can be fabricated from liquid foam templates. Short carbon fibres were mechanically frothed in an uncured liquid epoxy resin to produce an air-in-resin liquid foam template, followed by subsequent polymerisation. Fracture toughness test showed that the incorporation of short carbon fibres into the epoxy foams led to a significant increase in their critical stress intensity factors. It was also observed that neat epoxy foams failed catastrophically whilst sCF-reinforced epoxy foams failed in a progressive manner. Compression test further showed that the in-plane compressive moduli of the mechanically frothed sCF-reinforced epoxy foams were significantly higher than their out-of-plane compressive moduli, signifying an anisotropic mechanical response. This anisotropic mechanical response stemmed from the radial flow generated by the high intensity mechanical frothing process, facilitating the preferential orientation of the added short carbon fibres in-plane whilst the entrained air bubbles during the mechanical frothing process were in equilibrium with the surrounding uncured liquid epoxy resin, resulting in an epoxy foam with an isotropic (spherical) cellular structure.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2019.107871</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2019-11, Vol.184, p.107871, Article 107871
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_journals_2329721487
source ScienceDirect Journals
subjects Air bubbles
Air entrainment
Anisotropy
Carbon fiber reinforced plastics
Carbon fibers
Carbon-epoxy composites
Cellular structure
Compression tests
Epoxy resins
Fiber reinforced composites
Fiber reinforced polymers
Fractography
Fracture toughness
Frothing
Mechanical analysis
Mechanical frothing
Plastic foam
Radial flow
Short-fibre composites
Stress intensity factors
title Short carbon fibre-reinforced epoxy foams with isotropic cellular structure and anisotropic mechanical response produced from liquid foam templates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%20carbon%20fibre-reinforced%20epoxy%20foams%20with%20isotropic%20cellular%20structure%20and%20anisotropic%20mechanical%20response%20produced%20from%20liquid%20foam%20templates&rft.jtitle=Composites%20science%20and%20technology&rft.au=Song,%20Wenzhe&rft.date=2019-11-10&rft.volume=184&rft.spage=107871&rft.pages=107871-&rft.artnum=107871&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2019.107871&rft_dat=%3Cproquest_cross%3E2329721487%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-231c8eb5e49c083d2b5109746929996740992d09f7f6bf96948bce2629ba1e393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2329721487&rft_id=info:pmid/&rfr_iscdi=true